High-efficiency wafer-scale finishing of 4H-SiC (0001) surface using chemical-free electrochemical mechanical method with a solid polymer electrolyte

材料科学 电解质 表面处理 化学机械平面化 抛光 阳极 电解 薄脆饼 电化学 阴极 化学工程 碳化硅 表面粗糙度 表面光洁度 复合材料 纳米技术 电极 化学 物理化学 工程类
作者
Che Nor Syahirah Binti Che Zulkifle,Kenshin Hayama,Junji Murata
出处
期刊:Diamond and Related Materials [Elsevier BV]
卷期号:120: 108700-108700 被引量:11
标识
DOI:10.1016/j.diamond.2021.108700
摘要

Silicon carbide (SiC) has been extensively studied for applications in next-generation high-power electronic devices. High-quality and low-cost electronic devices require a surface finishing process that can produce smooth and defect-free 4H-SiC (0001) surfaces. However, SiC surfaces are difficult to remove because of their extremely high mechanical strength and chemical stability. Herein, we present a high-efficiency, wafer-scale, chemical-free finishing process for a 4H-SiC (0001) surface using electrochemical mechanical polishing (ECMP) with a solid polymer electrolyte (SPE). The ECMP method comprises electrochemical oxidation at the SiC/SPE interface and subsequent oxide removal by CeO2 particles. Electrolysis with a SiC (anode)/SPE/cathode electrochemical system demonstrated that the use of SPE as an alternative to liquid electrolytes allows the efficient electrochemical oxidation of highly inert SiC (0001) surfaces without requiring any chemicals. The ECMP process achieved a high material removal rate for SiC (0001) in the range of 1.8–9.2 μm/h, although strongly dependent on a 50 to 450 mA electrolytic current. Moreover, an electrolytic current of 250 mA produced a smooth and defect-free surface with a sub-nanometer-scale roughness (0.68 nm Sa) and excellent uniformity over an entire 2-inch SiC (0001) surface. Atomic force microscopy observations showed that ECMP under a low electrolytic current (30 mA) combined with subsequent CeO2 polishing without electrolysis can help improve microscale surface morphologies. The proposed ECMP, which produces a smooth and uniform surface without requiring chemicals, is a highly efficient and environmentally friendly finishing process for the fabrication of SiC wafers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
龚修洁发布了新的文献求助10
1秒前
奋斗小松鼠完成签到 ,获得积分10
1秒前
1秒前
bling完成签到,获得积分10
1秒前
王林春关注了科研通微信公众号
2秒前
2秒前
LongHua发布了新的文献求助10
2秒前
丰富的乐儿完成签到,获得积分10
4秒前
轻爱完成签到,获得积分10
4秒前
4秒前
小徐爱絮叨完成签到,获得积分20
4秒前
曾经的千柔完成签到,获得积分10
4秒前
充电宝应助快乐仙人掌采纳,获得10
5秒前
七人七发布了新的文献求助10
5秒前
李健应助showmaker采纳,获得10
5秒前
勇敢小羊发布了新的文献求助10
5秒前
Owen应助17采纳,获得10
5秒前
可爱的函函应助IMkily采纳,获得10
6秒前
long发布了新的文献求助10
6秒前
科研通AI6应助默默的橘子采纳,获得10
6秒前
科研通AI5应助丰富的乐儿采纳,获得10
7秒前
霸气的金鱼完成签到,获得积分10
7秒前
奋斗的宛亦完成签到,获得积分10
9秒前
9秒前
9秒前
科研通AI6应助Fancy采纳,获得10
10秒前
10秒前
香蕉觅云应助暗栀采纳,获得10
10秒前
哈基米发布了新的文献求助10
10秒前
11秒前
12秒前
nnetth完成签到 ,获得积分10
12秒前
CodeCraft应助早睡早起采纳,获得10
12秒前
13秒前
涛神发布了新的文献求助10
13秒前
123关闭了123文献求助
14秒前
14秒前
七仔发布了新的文献求助10
14秒前
14秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
A study of torsion fracture tests 510
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4748170
求助须知:如何正确求助?哪些是违规求助? 4094981
关于积分的说明 12669982
捐赠科研通 3807233
什么是DOI,文献DOI怎么找? 2101745
邀请新用户注册赠送积分活动 1127005
关于科研通互助平台的介绍 1003650