材料科学
原子层沉积
电解质
电极
图层(电子)
沉积(地质)
溶解
纳米
锂(药物)
降级(电信)
表层
离子
分解
化学工程
分析化学(期刊)
纳米技术
复合材料
化学
环境化学
古生物学
沉积物
工程类
生物
医学
电信
有机化学
物理化学
内分泌学
计算机科学
作者
Maxime Hallot,Borja Caja-Muñoz,Clément Leviel,Oleg I. Lebedev,R. Retoux,J. Ávila,Pascal Roussel,M. C. Asensio,Christophe Lethien
标识
DOI:10.1021/acsami.0c21961
摘要
LiNi0.5Mn1.5O4 (LNMO) is a promising 5V-class electrode for Li-ion batteries but suffers from manganese dissolution and electrolyte decomposition owing to the high working potential. An attractive solution to stabilize the surface chemistry consists in mastering the interface between the LNMO electrode and the liquid electrolyte with a surface protective layer made from the powerful surface deposition method. Here, we show that a 7400 nm thick sputtered LNMO film coated with a nanometer-thick lithium-ion-conductive Li3PO4 layer was deposited by the atomic layer deposition method. We demonstrate that this "material model system" can deliver a remarkable surface capacity (∼0.4 mAh cm–2 at 1C) and exhibits improved cycling lifetime (×650%) compared to the nonprotected electrode. Nevertheless, we observe that mechanical failure occurs within the LNMO and Li3PO4 films when long-term cycling is performed. This in-depth study gives new insights regarding the mechanical degradation of LNMO electrodes upon charge/discharge cycling and reveals for the first time that the surface protective layer made from the ALD method is not sufficient for long-term stability applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI