人工神经网络
光伏系统
计算机科学
希尔伯特-黄变换
模式(计算机接口)
功率(物理)
分解
电子工程
人工智能
电气工程
工程类
电信
物理
白噪声
生物
操作系统
量子力学
生态学
作者
Wenan Tan,Yi‐Ting Wang
标识
DOI:10.1109/aiea53260.2021.00015
摘要
Aiming at the low accuracy of photovoltaic power prediction, a photovoltaic power prediction algorithm based on empirical mode decomposition algorithm and integrated neural network is proposed. First, the empirical mode decomposition algorithm decomposes the historical photovoltaic power data into a series of stationary sequences, and then a prediction model is constructed using multiple backpropagation (BP) neural networks. Finally, these models' predicted values are weighted and fused, forming the final photovoltaic power prediction algorithm. The experimental results show that the proposed model herein has higher prediction accuracy and fewer prediction errors than the single BP neural network model and the Autoregressive Integrated Moving Average (ARIMA) model.
科研通智能强力驱动
Strongly Powered by AbleSci AI