De Novo Structure-Based Drug Design Using Deep Learning

药品 计算机科学 计算生物学 深度学习 人工智能 药物发现 医学 药理学 生物 生物信息学
作者
Sowmya Ramaswamy Krishnan,Navneet Bung,Sarveswara Rao Vangala,Rajgopal Srinivasan,Gopalakrishnan Bulusu,Arijit Roy
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:62 (21): 5100-5109 被引量:36
标识
DOI:10.1021/acs.jcim.1c01319
摘要

In recent years, deep learning-based methods have emerged as promising tools for de novo drug design. Most of these methods are ligand-based, where an initial target-specific ligand data set is necessary to design potent molecules with optimized properties. Although there have been attempts to develop alternative ways to design target-specific ligand data sets, availability of such data sets remains a challenge while designing molecules against novel target proteins. In this work, we propose a deep learning-based method, where the knowledge of the active site structure of the target protein is sufficient to design new molecules. First, a graph attention model was used to learn the structure and features of the amino acids in the active site of proteins that are experimentally known to form protein–ligand complexes. Next, the learned active site features were used along with a pretrained generative model for conditional generation of new molecules. A bioactivity prediction model was then used in a reinforcement learning framework to optimize the conditional generative model. We validated our method against two well-studied proteins, Janus kinase 2 (JAK2) and dopamine receptor D2 (DRD2), where we produce molecules similar to the known inhibitors. The graph attention model could identify the probable key active site residues, which influenced the conditional molecule generator to design new molecules with pharmacophoric features similar to the known inhibitors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橘子发布了新的文献求助10
刚刚
tusizi2006完成签到,获得积分10
刚刚
可爱的函函应助文艺臻采纳,获得10
刚刚
糯米糍完成签到,获得积分10
刚刚
1秒前
1秒前
Futh发布了新的文献求助10
1秒前
PSCs发布了新的文献求助20
2秒前
2秒前
66关注了科研通微信公众号
2秒前
2秒前
3秒前
3秒前
4秒前
Orange应助bobo采纳,获得10
4秒前
小马甲应助li采纳,获得10
4秒前
ding应助狂野的凡白采纳,获得10
4秒前
feng完成签到,获得积分10
4秒前
落后世界发布了新的文献求助10
4秒前
面条完成签到,获得积分10
5秒前
白洛玄发布了新的文献求助10
5秒前
可爱牛排完成签到,获得积分10
5秒前
曲夜白发布了新的文献求助10
6秒前
核桃发布了新的文献求助10
7秒前
迟迟完成签到,获得积分20
7秒前
7秒前
Galaxy发布了新的文献求助10
7秒前
Ceceliaqiu发布了新的文献求助10
7秒前
7秒前
7秒前
耍酷蛋挞完成签到 ,获得积分10
8秒前
香蕉觅云应助学术小菜鸡采纳,获得10
8秒前
爆米花应助cloud采纳,获得10
9秒前
10秒前
10秒前
思源应助董卓小蛮腰采纳,获得10
10秒前
10秒前
奥里给发布了新的文献求助10
10秒前
鲤鱼灵寒完成签到 ,获得积分10
10秒前
端庄之云发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Methods of optimization 200
Encyclopedia of Renewable Energy, Sustainability and the Environment Volume 1: Sustainable Development and Bioenergy Solutions 200
Zentrumsmannigfaltigkeiten für quasilineare parabolische Gleichungen 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4346692
求助须知:如何正确求助?哪些是违规求助? 3853028
关于积分的说明 12026459
捐赠科研通 3494565
什么是DOI,文献DOI怎么找? 1917409
邀请新用户注册赠送积分活动 960363
科研通“疑难数据库(出版商)”最低求助积分说明 860280