ICS-GNN

计算机科学 顶点(图论) 爬行 图形 情报检索 数据挖掘 理论计算机科学 医学 解剖
作者
Jun Gao,Jiazun Chen,Zhao Li,Ji Zhang
出处
期刊:Proceedings of the VLDB Endowment [Association for Computing Machinery]
卷期号:14 (6): 1006-1018 被引量:44
标识
DOI:10.14778/3447689.3447704
摘要

Searching a community containing a given query vertex in an online social network enjoys wide applications like recommendation, team organization, etc. When applied to real-life networks, the existing approaches face two major limitations. First, they usually take two steps, i.e. , crawling a large part of the network first and then finding the community next, but the entire network is usually too big and most of the data are not interesting to end users. Second, the existing methods utilize hand-crafted rules to measure community membership, while it is very difficult to define effective rules as the communities are flexible for different query vertices. In this paper, we propose an Interactive Community Search method based on Graph Neural Network (shortened by ICS-GNN) to locate the target community over a subgraph collected on the fly from an online network. Specifically, we recast the community membership problem as a vertex classification problem using GNN, which captures similarities between the graph vertices and the query vertex by combining content and structural features seamlessly and flexibly under the guide of users' labeling. We then introduce a k -sized Maximum-GNN-scores (shortened by kMG ) community to describe the target community. We next discover the target community iteratively and interactively. In each iteration, we build a candidate subgraph using the crawled pages with the guide of the query vertex and labeled vertices, infer the vertex scores with a GNN model trained on the subgraph, and discover the kMG community which will be evaluated by end users to acquire more feedback. Besides, two optimization strategies are proposed to combine ranking loss into the GNN model and search more space in the target community location. We conduct the experiments in both offline and online real-life data sets, and demonstrate that ICS-GNN can produce effective communities with low overhead in communication, computation, and user labeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助wyw123采纳,获得10
刚刚
newplayer完成签到,获得积分10
1秒前
dongdadada完成签到,获得积分10
1秒前
爆米花应助wjx采纳,获得10
1秒前
LYH发布了新的文献求助10
1秒前
诚心晓露完成签到,获得积分10
3秒前
3秒前
4秒前
芋头关注了科研通微信公众号
4秒前
xiaoshulin完成签到,获得积分10
5秒前
桐桐应助sharony采纳,获得10
5秒前
6秒前
小离完成签到,获得积分10
6秒前
6秒前
7秒前
Zn0103完成签到 ,获得积分10
7秒前
aibaa完成签到,获得积分10
7秒前
巅峰囚冰完成签到,获得积分10
8秒前
10秒前
科研消炎完成签到,获得积分10
11秒前
芋头发布了新的文献求助10
12秒前
费老五发布了新的文献求助200
12秒前
英吉利25发布了新的文献求助10
13秒前
蓦然回首完成签到,获得积分10
14秒前
脑洞疼应助LYH采纳,获得10
14秒前
一天到晚游泳的鱼完成签到,获得积分10
15秒前
今后应助问瀚一涟漪采纳,获得10
15秒前
16秒前
16秒前
Marcus发布了新的文献求助10
17秒前
小马甲应助科研消炎采纳,获得30
17秒前
行走在科研的小路上完成签到,获得积分10
17秒前
shusen完成签到,获得积分10
17秒前
17秒前
丸子发布了新的文献求助10
17秒前
Lucas应助飞飞飞采纳,获得10
18秒前
NOS完成签到 ,获得积分10
18秒前
轻松狗发布了新的文献求助10
19秒前
解语花发布了新的文献求助20
19秒前
太叔丹翠完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
《2024-2029年中国减肥产品行业市场分析及发展前景预测报告》 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4504436
求助须知:如何正确求助?哪些是违规求助? 3953137
关于积分的说明 12254897
捐赠科研通 3612717
什么是DOI,文献DOI怎么找? 1987733
邀请新用户注册赠送积分活动 1023957
科研通“疑难数据库(出版商)”最低求助积分说明 916083