Unsupervised Pre-training for Person Re-identification

计算机科学 杠杆(统计) 人工智能 鉴定(生物学) 特征学习 一般化 注释 机器学习 训练集 特征(语言学) 标记数据 代表(政治) 模式识别(心理学) 数学分析 法学 哲学 政治学 政治 生物 植物 语言学 数学
作者
Dengpan Fu,Dongdong Chen,Jianmin Bao,Hao Yang,Lu Yuan,Lei Zhang,Houqiang Li,Dong Chen
标识
DOI:10.1109/cvpr46437.2021.01451
摘要

In this paper, we present a large scale unlabeled person re-identification (Re-ID) dataset "LUPerson" and make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature representation. This is to address the problem that all existing person Re-ID datasets are all of limited scale due to the costly effort required for data annotation. Previous research tries to leverage models pre-trained on ImageNet to mitigate the shortage of person Re-ID data but suffers from the large domain gap between ImageNet and person Re-ID data. LUPerson is an unlabeled dataset of 4M images of over 200K identities, which is 30× larger than the largest existing Re-ID dataset. It also covers a much diverse range of capturing environments (e.g., camera settings, scenes, etc.). Based on this dataset, we systematically study the key factors for learning Re-ID features from two perspectives: data augmentation and contrastive loss. Unsupervised pre-training performed on this large-scale dataset effectively leads to a generic Re-ID feature that can benefit all existing person Re-ID methods. Using our pre-trained model in some basic frameworks, our methods achieve state-of-the-art results without bells and whistles on four widely used Re-ID datasets: CUHK03, Market1501, DukeMTMC, and MSMT17. Our results also show that the performance improvement is more significant on small-scale target datasets or under few-shot setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助qiulong采纳,获得10
刚刚
科研通AI5应助LYJ采纳,获得100
刚刚
少东瓜完成签到,获得积分10
1秒前
2秒前
4秒前
洛洛发布了新的文献求助10
5秒前
张宏宇发布了新的文献求助10
7秒前
7秒前
布丁完成签到 ,获得积分0
8秒前
8秒前
秋子发布了新的文献求助10
9秒前
李健的小迷弟应助Min采纳,获得10
12秒前
LYJ发布了新的文献求助100
13秒前
kaki完成签到,获得积分20
18秒前
情怀应助ZW采纳,获得10
20秒前
破灭圆舞曲完成签到,获得积分10
20秒前
21秒前
今后应助老实寒云采纳,获得10
23秒前
坚定的骁发布了新的文献求助10
24秒前
所所应助张宏宇采纳,获得10
24秒前
25秒前
Hello应助达不溜qp采纳,获得10
27秒前
田様应助秋子采纳,获得10
27秒前
坚定的骁完成签到,获得积分10
28秒前
五岳三鸟完成签到,获得积分10
29秒前
rrrr发布了新的文献求助20
30秒前
32秒前
隐形曼青应助aaaq采纳,获得30
34秒前
wanci应助起起采纳,获得10
34秒前
35秒前
36秒前
orixero应助朴实以云采纳,获得10
39秒前
魔法师完成签到,获得积分0
40秒前
40秒前
橘子香发布了新的文献求助10
40秒前
丢丢银发布了新的文献求助50
41秒前
42秒前
CHY发布了新的文献求助30
45秒前
46秒前
moji发布了新的文献求助10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776855
求助须知:如何正确求助?哪些是违规求助? 3322276
关于积分的说明 10209617
捐赠科研通 3037624
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976