Causal Incremental Graph Convolution for Recommender System Retraining

计算机科学 再培训 理论计算机科学 人工智能 卷积(计算机科学) 合成数据 图形 推荐系统 机器学习 数据挖掘 推论 人工神经网络 业务 国际贸易
作者
Sihao Ding,Fuli Feng,Xiangnan He,Yong Liao,Jun Shi,Yongdong Zhang
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:15
标识
DOI:10.1109/tnnls.2022.3156066
摘要

The real-world recommender system needs to be regularly retrained to keep with the new data. In this work, we consider how to efficiently retrain graph convolution network (GCN)-based recommender models that are state-of-the-art techniques for the collaborative recommendation. To pursue high efficiency, we set the target as using only new data for model updating, meanwhile not sacrificing the recommendation accuracy compared with full model retraining. This is nontrivial to achieve since the interaction data participates in both the graph structure for model construction and the loss function for model learning, whereas the old graph structure is not allowed to use in model updating. Toward the goal, we propose a causal incremental graph convolution (IGC) approach, which consists of two new operators named IGC and colliding effect distillation (CED) to estimate the output of full graph convolution. In particular, we devise simple and effective modules for IGC to ingeniously combine the old representations and the incremental graph and effectively fuse the long- and short-term preference signals. CED aims to avoid the out-of-date issue of inactive nodes that are not in the incremental graph, which connects the new data with inactive nodes through causal inference. In particular, CED estimates the causal effect of new data on the representation of inactive nodes through the control of their collider. Extensive experiments on three real-world datasets demonstrate both accuracy gains and significant speed-ups over the existing retraining mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒适青槐完成签到 ,获得积分10
刚刚
动漫大师发布了新的文献求助10
1秒前
bjx发布了新的文献求助10
1秒前
2秒前
Ava应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
笨笨芯应助科研通管家采纳,获得10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
3秒前
听听发布了新的文献求助10
5秒前
Sunday发布了新的文献求助30
7秒前
9秒前
10秒前
西米完成签到,获得积分10
10秒前
西米发布了新的文献求助10
13秒前
Rye227完成签到,获得积分10
15秒前
Lensin完成签到 ,获得积分10
15秒前
笨笨忘幽发布了新的文献求助10
16秒前
21秒前
留胡子的霖应助笨笨忘幽采纳,获得10
24秒前
25秒前
25秒前
28秒前
28秒前
yn发布了新的文献求助30
30秒前
zw2530完成签到 ,获得积分10
31秒前
信仰完成签到,获得积分10
34秒前
35秒前
pluto应助笨笨忘幽采纳,获得10
37秒前
39秒前
Lucas应助ZHH采纳,获得10
39秒前
小田完成签到,获得积分10
41秒前
41秒前
lyx发布了新的文献求助10
42秒前
青橘短衫发布了新的文献求助10
44秒前
46秒前
小田发布了新的文献求助10
47秒前
冷静如柏完成签到,获得积分10
49秒前
H_dd发布了新的文献求助10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325186
关于积分的说明 10221815
捐赠科研通 3040328
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535