断层(地质)
算法
计算机科学
核主成分分析
核(代数)
过程(计算)
模式识别(心理学)
人工智能
数据挖掘
数学
核方法
支持向量机
组合数学
地震学
地质学
操作系统
作者
Yingwei Zhang,Zhengbing Wang
标识
DOI:10.1109/ccdc.2013.6561711
摘要
In this paper, a fault reconstruction algorithm based on fault-relevant KPCA is proposed. Compared with the traditional fault reconstruction method whose fault model is composed of the first major distribution directions, the proposed reconstruction algorithm gives a deep analysis of the original fault space according to the relationships with normal process information to extract the principal directions that are relevant to, or affected by fault. Considering the nonlinear situation, kernel PCA is applied. Simulation results on the penicillin fermentation process demonstrate the effectiveness of the proposed algorithm.
科研通智能强力驱动
Strongly Powered by AbleSci AI