Quantitative Structure−Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

数量结构-活动关系 适用范围 集合(抽象数据类型) 线性回归 训练集 数据集 预测建模 计算机科学 毒性 回归 回归分析 机器学习 人工智能 统计 数学 化学 有机化学 程序设计语言
作者
Hao Zhu,Todd M. Martin,Lin Ye,Alexander Sedykh,Douglas M. Young,Alexander Tropsha
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:22 (12): 1913-1921 被引量:256
标识
DOI:10.1021/tx900189p
摘要

Few quantitative structure−activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT's training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyl完成签到,获得积分10
1秒前
脑洞疼应助xu采纳,获得10
1秒前
1秒前
2秒前
酷酷的乐菱完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
多伶俐完成签到,获得积分10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
英俊的铭应助阳光沛柔采纳,获得10
5秒前
风玲完成签到,获得积分10
5秒前
fouli完成签到,获得积分10
6秒前
不想搞事发布了新的文献求助10
6秒前
许晴完成签到 ,获得积分10
7秒前
David完成签到,获得积分10
7秒前
酷酷菲音完成签到,获得积分10
7秒前
Rui发布了新的文献求助10
8秒前
谦让的西装完成签到 ,获得积分10
8秒前
奋斗的暖阳完成签到,获得积分10
8秒前
猪八戒完成签到,获得积分20
8秒前
ban完成签到,获得积分10
8秒前
刘荣圣发布了新的文献求助10
9秒前
YORLAN完成签到 ,获得积分10
9秒前
Teddy4731完成签到,获得积分10
9秒前
123完成签到,获得积分20
10秒前
高兴的玉米完成签到 ,获得积分10
10秒前
10秒前
淡淡友瑶完成签到,获得积分10
10秒前
11秒前
yanghaobo完成签到,获得积分10
11秒前
自信的网络完成签到 ,获得积分10
11秒前
激动的一手完成签到,获得积分10
12秒前
猪八戒发布了新的文献求助10
13秒前
13秒前
加一完成签到,获得积分10
13秒前
积极的黑猫完成签到,获得积分10
13秒前
风趣的灵枫完成签到 ,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4106489
求助须知:如何正确求助?哪些是违规求助? 3644482
关于积分的说明 11544294
捐赠科研通 3351223
什么是DOI,文献DOI怎么找? 1841332
邀请新用户注册赠送积分活动 907960
科研通“疑难数据库(出版商)”最低求助积分说明 825156