控制理论(社会学)
跟踪误差
非线性系统
自适应控制
有界函数
控制器(灌溉)
计算机科学
领域(数学分析)
人工神经网络
理论(学习稳定性)
控制(管理)
数学
人工智能
机器学习
物理
数学分析
生物
量子力学
农学
作者
Yumei Sun,Bing Chen,Chong Lin,Honghong Wang
标识
DOI:10.1109/tcyb.2017.2749511
摘要
This paper focuses on finite-time adaptive neural tracking control for nonlinear systems in nonstrict feedback form. A semiglobal finite-time practical stability criterion is first proposed. Correspondingly, the finite-time adaptive neural control strategy is given by using this criterion. Unlike the existing results on adaptive neural/fuzzy control, the proposed adaptive neural controller guarantees that the tracking error converges to a sufficiently small domain around the origin in finite time, and other closed-loop signals are bounded. At last, two examples are used to test the validity of our results.
科研通智能强力驱动
Strongly Powered by AbleSci AI