Experimental comparison of single-pixel imaging algorithms

计算机科学 算法 稳健性(进化) 压缩传感 像素 人工智能 迭代重建 共轭梯度法 正规化(语言学) 投影(关系代数) 生物化学 基因 化学
作者
Liheng Bian,Jinli Suo,Qionghai Dai,Feng Chen
出处
期刊:Journal of the Optical Society of America [Optica Publishing Group]
卷期号:35 (1): 78-78 被引量:175
标识
DOI:10.1364/josaa.35.000078
摘要

Single-pixel imaging (SPI) is a novel technique that captures 2D images using a photodiode, instead of conventional 2D array sensors. SPI has high signal-to-noise ratio, wide spectral range, low cost, and robustness to light scattering. Various algorithms have been proposed for SPI reconstruction, including linear correlation methods, the alternating projection (AP) method, and compressive sensing (CS) based methods. However, there has been no comprehensive review discussing respective advantages, which is important for SPI's further applications and development. In this paper, we review and compare these algorithms in a unified reconstruction framework. We also propose two other SPI algorithms, including a conjugate gradient descent (CGD) based method and a Poisson maximum-likelihood-based method. Both simulations and experiments validate the following conclusions: to obtain comparable reconstruction accuracy, the CS-based total variation (TV) regularization method requires the fewest measurements and consumes the least running time for small-scale reconstruction, the CGD and AP methods run fastest in large-scale cases, and the TV and AP methods are the most robust to measurement noise. In a word, there are trade-offs in capture efficiency, computational complexity, and robustness to noise among different SPI algorithms. We have released our source code for non-commercial use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27完成签到,获得积分20
刚刚
1秒前
大个应助NO0809采纳,获得10
1秒前
2秒前
shuqi完成签到 ,获得积分10
2秒前
2秒前
3秒前
ln发布了新的文献求助10
4秒前
hakunamatata完成签到 ,获得积分10
5秒前
beiest发布了新的文献求助200
5秒前
古藤完成签到 ,获得积分10
6秒前
6秒前
tao完成签到 ,获得积分10
9秒前
10秒前
11秒前
安在哉完成签到,获得积分10
13秒前
14秒前
我是老大应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得30
15秒前
丘比特应助科研通管家采纳,获得10
16秒前
泽ze应助科研通管家采纳,获得20
16秒前
英俊的铭应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
16秒前
温柔的耳机完成签到,获得积分10
16秒前
FashionBoy应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
Racheal发布了新的文献求助10
17秒前
爆米花应助快乐的凡霜采纳,获得10
17秒前
辛勤如南完成签到,获得积分10
17秒前
19秒前
19秒前
卢丹丹完成签到,获得积分20
20秒前
打打应助梅雨季来信采纳,获得10
23秒前
HZHZHZH发布了新的文献求助10
23秒前
23秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818939
求助须知:如何正确求助?哪些是违规求助? 3362015
关于积分的说明 10414983
捐赠科研通 3080315
什么是DOI,文献DOI怎么找? 1694152
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768337