材料科学
聚酰胺
水运
化学工程
膜
反渗透
纳米技术
复合材料
环境工程
环境科学
水流
遗传学
工程类
生物
作者
Zhiwei Jiang,Santanu Karan,Andrew G. Livingston
标识
DOI:10.1002/adma.201705973
摘要
Thin-film composite membranes comprising a polyamide nanofilm separating layer on a support material are state of the art for desalination by reverse osmosis. Nanofilm thickness is thought to determine the rate of water transport through the membranes; although due to the fast and relatively uncontrolled interfacial polymerization reaction employed to form these nanofilms, they are typically crumpled and the separating layer is reported to be ≈50-200 nm thick. This crumpled structure has confounded exploration of the independent effects of thickness, permeation mechanism, and the support material. Herein, smooth sub-8 nm polyamide nanofilms are fabricated at a free aqueous-organic interface, exhibiting chemical homogeneity at both aqueous and organic facing surfaces. Transfer of these ultrathin nanofilms onto porous supports provides fast water transport through the resulting nanofilm composite membranes. Manipulating the intrinsic nanofilm thickness from ≈15 down to 8 nm reveals that water permeance increases proportionally with the thickness decrease, after which it increases nonlinearly to 2.7 L m-2 h-1 bar-1 as the thickness is further reduced to ≈6 nm.
科研通智能强力驱动
Strongly Powered by AbleSci AI