清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Performance of Multimodal Generative AI Models in Addressing Complex Dental Inquiries With Text, Images, and Analytical Data

术语 计算机科学 Microsoft excel 考试(生物学) 公务员 人工智能 多模式学习 人机交互 描述性统计 自然语言处理 易读性 米勒 医学教育 十四行诗 讨论板
作者
Hang-Nga Mai,Du Hyeong Lee,Jekita Kaenploy,Jong-Eun Kim,Seok-hwan Cho,Hang-Nga Mai,Du Hyeong Lee,Jekita Kaenploy,Jong-Eun Kim,Seok-hwan Cho
出处
期刊:Journal of Esthetic and Restorative Dentistry [Wiley]
标识
DOI:10.1111/jerd.70064
摘要

ABSTRACT Objective Multimodal large language models (LLMs) have the potential to transform dental learning and decision‐making by addressing multimodal dental inquiries that integrate text, images, and analytical data. The purpose of this study was to evaluate the performance of various multimodal LLMs in responding to multimodal dental queries and to identify factors influencing their performance. Materials and Methods Four multimodal LLMs (ChatGPT‐4V, Claude 3 Sonnet, Microsoft 365 Copilot 2024, and Google Gemini 1.5 Pro) were evaluated based on their correct answers and passing margin for the Integrated National Board Dental Examination (INBDE) and the Advanced Dental Admission Test (ADAT). Descriptive statistics, χ 2 tests, Cohen's κ , Kruskal–Wallis tests, and Mann–Whitney U tests were used to analyze the performance across different question types, independent inputs, and picture types ( α = 0.05). Results Claude 3 Sonnet outperformed the other models in both INBDE and ADAT exams, achieving the highest accuracy, followed by ChatGPT‐4V, Microsoft 365 Copilot 2024, and Google Gemini 1.5 Pro. χ 2 tests revealed significant differences between chatbots in the ADAT exam, but not in the INBDE. Cohen's κ showed weak to moderate model agreement for INBDE and stronger agreement for ADAT, with the highest agreement between Claude 3 Sonnet and ChatGPT‐4V ( κ = 0.757) and the lowest between Google Gemini 1.5 Pro and Microsoft 365 Copilot 2024 ( κ = 0.059). Model performance was influenced by question type (theoretical and clinical), with common errors including misinterpreting clinical scenarios, visual data difficulties, and dental terminology ambiguities. Conclusion Multimodal LLMs show potential in answering multimodal dental inquiries, though performance varies across models, with challenges in interpreting clinical scenarios, visual data, and terminology ambiguity. Clinical Significance Large language models canbe applied not only to memorization‐type but also interpretation andproblem‐solving cognitive questions in dentistry. Tomaximize the utility of these artificial intelligence models, users need bothan understanding of their differences and the ability to manage complexclinical data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡国伦完成签到 ,获得积分10
1秒前
10秒前
chen完成签到,获得积分10
18秒前
如意2023完成签到 ,获得积分10
28秒前
32秒前
vitamin完成签到 ,获得积分10
34秒前
wanci应助无情的琳采纳,获得10
37秒前
48秒前
49秒前
jojo完成签到,获得积分10
51秒前
无情的琳发布了新的文献求助10
52秒前
甜甜的紫菜完成签到 ,获得积分10
55秒前
lilylwy完成签到 ,获得积分0
58秒前
1分钟前
甜甜纸飞机完成签到 ,获得积分10
1分钟前
Pengy发布了新的文献求助10
1分钟前
Pengy完成签到,获得积分10
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
1分钟前
打打应助Pengy采纳,获得10
1分钟前
王波完成签到 ,获得积分10
1分钟前
含糊的茹妖完成签到 ,获得积分10
1分钟前
1分钟前
彭于晏应助无情的琳采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
戚听云完成签到 ,获得积分20
2分钟前
无情的琳发布了新的文献求助10
2分钟前
jiangmi完成签到,获得积分10
2分钟前
无情的琳发布了新的文献求助10
2分钟前
平常念蕾完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
gmc完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
宇文雨文完成签到 ,获得积分10
4分钟前
开心每一天完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724374
求助须知:如何正确求助?哪些是违规求助? 5287586
关于积分的说明 15299851
捐赠科研通 4872291
什么是DOI,文献DOI怎么找? 2616852
邀请新用户注册赠送积分活动 1566694
关于科研通互助平台的介绍 1523657