材料科学
金属间化合物
三元运算
质子交换膜燃料电池
催化作用
阴极
纳米颗粒
氧还原反应
化学工程
聚结(物理)
密度泛函理论
纳米技术
氧气
电催化剂
纳米材料基催化剂
氧化还原
工作(物理)
析氧
电子结构
活化能
交换电流密度
铂金
电化学
氧还原
化学物理
粒子(生态学)
作者
Y. H. Park,Jun Ho Seok,Jae Hyun Park,D. S. Kim,Seong Chan Cho,Myungwoong Kim,Yujin Jeong,Taekyoung Kim,Hionsuck Baik,Sang Uck Lee,Sung Jong Yoo,Kwangyeol Lee
标识
DOI:10.1002/adma.202521036
摘要
ABSTRACT The sluggish kinetics and limited durability of the oxygen reduction reaction (ORR) at the cathode remain a major barrier to the widespread deployment of proton exchange membrane fuel cells (PEMFCs). Here, we introduce a low‐temperature interfacial engineering strategy to construct ternary L1 2 ‐ordered Pt 3 (Co,Mn) 1 intermetallic nanoparticles. A conformal MnO shell on Pt 3 Co 1 cores not only suppresses particle coalescence but also undergoes redox activation to generate interfacial oxygen vacancies that initiate the disorder‐to‐order transition. During thermal activation, these vacancies mediate Co–Mn atomic exchange across the core@shell interface, forming interfacial Co–O and intralattice Pt–Mn bonds that cooperatively stabilize the ordered framework. This oxygen‐vacancy‐driven interfacial evolution reconfigures the Pt electronic structure, downshifting the d‐band center, enriching electron density at Pt active sites, and optimizing oxygen‐intermediate adsorption. The resulting catalyst exhibits high intrinsic ORR activity and outstanding durability over extended accelerated cycling. When implemented into practical membrane‐electrode assemblies, it surpasses the U.S. Department of Energy (DOE) 2025 PEMFC benchmarks for both rated power density and durability, demonstrating its promise for real‐world fuel cell applications. More broadly, this work establishes redox‐active, confinement‐mediated interfacial engineering as a general paradigm for directing atomic ordering and electronic structure in complex multimetallic electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI