亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Genome-wide prediction for complex traits under the presence of dominance effects in simulated populations using GBLUP and machine learning methods

遗传力 优势(遗传学) 统计 随机森林 最佳线性无偏预测 支持向量机 生物 机器学习 均方误差 人工智能 数学 计算机科学 遗传学 选择(遗传算法) 基因
作者
Anderson Antônio Carvalho Alves,Rebeka Magalhães da Costa,Tiago Bresolin,Gerardo Alves Fernandes Júnior,Rafael Espigolan,André Mauric Frossard Ribeiro,Roberto Carvalheiro,Lúcia Galvão de Albuquerque
出处
期刊:Journal of Animal Science [Oxford University Press]
卷期号:98 (6) 被引量:19
标识
DOI:10.1093/jas/skaa179
摘要

Abstract The aim of this study was to compare the predictive performance of the Genomic Best Linear Unbiased Predictor (GBLUP) and machine learning methods (Random Forest, RF; Support Vector Machine, SVM; Artificial Neural Network, ANN) in simulated populations presenting different levels of dominance effects. Simulated genome comprised 50k SNP and 300 QTL, both biallelic and randomly distributed across 29 autosomes. A total of six traits were simulated considering different values for the narrow and broad-sense heritability. In the purely additive scenario with low heritability (h2 = 0.10), the predictive ability obtained using GBLUP was slightly higher than the other methods whereas ANN provided the highest accuracies for scenarios with moderate heritability (h2 = 0.30). The accuracies of dominance deviations predictions varied from 0.180 to 0.350 in GBLUP extended for dominance effects (GBLUP-D), from 0.06 to 0.185 in RF and they were null using the ANN and SVM methods. Although RF has presented higher accuracies for total genetic effect predictions, the mean-squared error values in such a model were worse than those observed for GBLUP-D in scenarios with large additive and dominance variances. When applied to prescreen important regions, the RF approach detected QTL with high additive and/or dominance effects. Among machine learning methods, only the RF was capable to cover implicitly dominance effects without increasing the number of covariates in the model, resulting in higher accuracies for the total genetic and phenotypic values as the dominance ratio increases. Nevertheless, whether the interest is to infer directly on dominance effects, GBLUP-D could be a more suitable method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
4秒前
顾矜应助fyr采纳,获得10
8秒前
aa完成签到,获得积分10
21秒前
22秒前
luohao完成签到,获得积分10
25秒前
Delight发布了新的文献求助10
27秒前
所所应助科研通管家采纳,获得10
49秒前
ceeray23应助科研通管家采纳,获得10
50秒前
Lucas应助科研通管家采纳,获得10
50秒前
香蕉觅云应助科研通管家采纳,获得10
50秒前
宅心仁厚完成签到 ,获得积分10
54秒前
SciGPT应助肉丝儿采纳,获得10
55秒前
1分钟前
我是老大应助会飞的蜗牛采纳,获得10
1分钟前
肉丝儿发布了新的文献求助10
1分钟前
Alaska发布了新的文献求助10
1分钟前
看不了一点文献应助Alaska采纳,获得10
1分钟前
asd完成签到,获得积分10
1分钟前
科研通AI2S应助ninomiya0采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
lily发布了新的文献求助10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
lily完成签到,获得积分10
3分钟前
fyr关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
3分钟前
fyr发布了新的文献求助10
3分钟前
3分钟前
4分钟前
obedVL完成签到,获得积分10
4分钟前
Alaska完成签到,获得积分10
4分钟前
Alaska发布了新的文献求助10
4分钟前
4分钟前
ceeray23发布了新的文献求助20
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Machine Learning for Polymer Informatics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407926
求助须知:如何正确求助?哪些是违规求助? 4525379
关于积分的说明 14101723
捐赠科研通 4439250
什么是DOI,文献DOI怎么找? 2436676
邀请新用户注册赠送积分活动 1428660
关于科研通互助平台的介绍 1406740