Feature Extraction for Data-Driven Remaining Useful Life Prediction of Rolling Bearings

核(代数) 一致性(知识库) 特征提取 人工智能 工程类 方位(导航) 区间(图论) 状态监测 计算机科学 数学 组合数学 电气工程
作者
Huimin Zhao,Liu Hao-dong,Yang Jin,Xiangjun Dang,Wu Deng
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-10 被引量:152
标识
DOI:10.1109/tim.2021.3059500
摘要

A variety of data-driven methods have been proposed to predict remaining useful life (RUL) of key component for rolling bearings. The accuracy of data-driven RUL prediction model largely depends on the extraction method of performance degradation features. The individual heterogeneity and working condition difference of rolling bearings lead to the different performance degradation curves of rolling bearings, which result in the mismatch between the established RUL prediction model by the training rolling bearings and the test rolling bearings. If a feature is found, which can reflect the consistency of the performance degradation curve of each rolling bearings, and give the indicator to determine the node and predictable interval of the declining period, the accuracy of the RUL prediction model will be improved. To solve this problem, a new feature extraction method based on the data-driven method, namely, Fitting Curve Derivative Method of Maximum Power Spectrum Density (FDMPD), is proposed to extract the performance degradation features of the same or similar rolling bearings from the historical state monitoring data in this article. The FDMPD can make the performance degradation feature curves of life cycle, which takes on consistency trend for different rolling bearings, and the starting point of the rolling bearings to enter the degenerating period is defined and the working stage of rolling bearings is divided. Based on this, the kernel extreme learning machine (KELM) and weight application to failure times (WAFT) are combined with FDMPD to establish a new RUL prediction model of rolling bearings, which can effectively realize the RUL prediction of rolling bearings. The whole life cycle data of rolling bearings are used to verify the validity of the RUL prediction model. The experimental results show that the established RUL prediction model can accurately predict the RUL of rolling bearings. It has the advantages of rapidity, stability, and applicability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
Marciu33发布了新的文献求助10
3秒前
5秒前
细胞呵呵完成签到,获得积分10
6秒前
科研通AI5应助鱼鱼子采纳,获得10
7秒前
自信的九娘完成签到,获得积分10
8秒前
9秒前
9秒前
bagai完成签到,获得积分10
9秒前
核桃发布了新的文献求助30
11秒前
12秒前
13秒前
鉴衡完成签到,获得积分10
14秒前
14秒前
核桃发布了新的文献求助10
15秒前
我喝白开水完成签到,获得积分10
16秒前
16秒前
鉴衡发布了新的文献求助10
18秒前
善学以致用应助等待雅寒采纳,获得10
18秒前
Ww完成签到,获得积分10
18秒前
科研通AI5应助珂儿采纳,获得10
18秒前
在水一方应助果然采纳,获得10
20秒前
风清扬发布了新的文献求助10
20秒前
Yuanyuan发布了新的文献求助10
20秒前
qcq完成签到 ,获得积分10
21秒前
21秒前
王杰发布了新的文献求助10
23秒前
充电宝应助羽梨采纳,获得10
24秒前
梦丽有人完成签到,获得积分10
24秒前
25秒前
核桃发布了新的文献求助10
25秒前
26秒前
28秒前
量子星尘发布了新的文献求助10
28秒前
28秒前
29秒前
852应助Yuanyuan采纳,获得10
30秒前
张张完成签到 ,获得积分10
30秒前
弄好不啦发布了新的文献求助10
31秒前
小马甲应助TobyGarfielD采纳,获得10
32秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
Medicine and the Navy, 1200-1900: 1815-1900 420
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Changing towards human-centred technology 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4248424
求助须知:如何正确求助?哪些是违规求助? 3781617
关于积分的说明 11872456
捐赠科研通 3434287
什么是DOI,文献DOI怎么找? 1884846
邀请新用户注册赠送积分活动 936418
科研通“疑难数据库(出版商)”最低求助积分说明 842350