Crystalline Copper Selenide as a Reliable Non‐Noble Electro(pre)catalyst for Overall Water Splitting

硒化物 分解水 催化作用 贵金属 材料科学 无机化学 化学工程 化学 冶金 光催化 有机化学 工程类
作者
Biswarup Chakraborty,Rodrigo Beltrán‐Suito,Viktor Hlukhyy,Johannes Schmidt,Prashanth W. Menezes,Matthias Drieß
出处
期刊:Chemsuschem [Wiley]
卷期号:13 (12): 3222-3229 被引量:96
标识
DOI:10.1002/cssc.202000445
摘要

Electrochemical water splitting remains a frontier research topic in the quest to develop artificial photosynthetic systems by using noble metal-free and sustainable catalysts. Herein, a highly crystalline CuSe has been employed as active electrodes for overall water splitting (OWS) in alkaline media. The pure-phase klockmannite CuSe deposited on highly conducting nickel foam (NF) electrodes by electrophoretic deposition (EPD) displayed an overpotential of merely 297 mV for the reaction of oxygen evolution (OER) at a current density of 10 mA cm-2 whereas an overpotential of 162 mV was attained for the hydrogen evolution reaction (HER) at the same current density, superseding the Cu-based as well as the state-of-the-art RuO2 and IrO2 catalysts. The bifunctional behavior of the catalyst has successfully been utilized to fabricate an overall water-splitting device, which exhibits a low cell voltage (1.68 V) with long-term stability. Post-catalytic analyses of the catalyst by ex-situ microscopic, spectroscopic, and analytical methods confirm that under both OER and HER conditions, the crystalline and conductive CuSe behaves as an electro(pre)catalyst forming a highly reactive in situ crystalline Cu(OH)2 overlayer (electro(post)catalyst), which facilitates oxygen (O2 ) evolution, and an amorphous Cu(OH)2 /CuOx active surface for hydrogen (H2 ) evolution. The present study demonstrates a distinct approach to produce highly active copper-based catalysts starting from copper chalcogenides and could be used as a basis to enhance the performance in durable bifunctional overall water splitting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SHAN发布了新的文献求助10
刚刚
受伤的靖琪完成签到,获得积分10
刚刚
刚刚
lm发布了新的文献求助10
刚刚
1秒前
1秒前
牛马日常发布了新的文献求助10
1秒前
乐乐应助乐乐乐采纳,获得10
2秒前
风中千易关注了科研通微信公众号
2秒前
杜杜杜发布了新的文献求助10
2秒前
3秒前
4秒前
wanci应助wwb采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
MXene应助勇敢兔兔采纳,获得20
4秒前
kk发布了新的文献求助10
4秒前
研友_VZG7GZ应助ikun采纳,获得10
5秒前
5秒前
lurongjun发布了新的文献求助10
5秒前
5秒前
赘婿应助弱于一般人类采纳,获得10
5秒前
5秒前
樱桃完成签到,获得积分10
6秒前
7秒前
优美一斩发布了新的文献求助20
7秒前
ym发布了新的文献求助10
7秒前
nanxing完成签到,获得积分10
7秒前
8秒前
隐形曼青应助小梦采纳,获得10
8秒前
无奈书包发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
小橙发布了新的文献求助10
9秒前
10秒前
李爱国应助lm采纳,获得10
10秒前
李爱国应助lui524采纳,获得10
10秒前
贾晓伟发布了新的文献求助10
11秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
可瓷化聚合物复合材料的制备及成瓷性能、机理研究 500
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869941
求助须知:如何正确求助?哪些是违规求助? 3412219
关于积分的说明 10678160
捐赠科研通 3136600
什么是DOI,文献DOI怎么找? 1730293
邀请新用户注册赠送积分活动 833899
科研通“疑难数据库(出版商)”最低求助积分说明 780994