Exploring Heat-Shielding Nanoparticle-Based Materials via First-Principles Calculations and Transfer Learning

电磁屏蔽 纳米颗粒 材料科学 传热 吸收(声学) 纳米技术 复合材料 热力学 物理
作者
Tomohiro Yoshida,Ryo Maezono,Kenta Hongo
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:4 (2): 1932-1939 被引量:3
标识
DOI:10.1021/acsanm.0c03298
摘要

From an energy-saving perspective, blocking infrared (IR) radiations in the solar spectrum has garnered increased attention, and several heat-shielding nanoparticle-based materials have been employed for this purpose. However, they are composed of precious metals and rare-earth elements, and therefore, alternative materials are preferred. Herein, heat-shielding nanoparticle-based materials were explored via first-principles calculations and transfer learning. We evaluated the visible light absorption from the imaginary part of the bulk dielectric function. However, to calculate the dielectric function with high accuracy, first-principles calculations using hybrid functionals are required, but their computational costs are high. Therefore, it is difficult to obtain reasonable data to train ML models to create a prediction model using machine learning techniques. We created a prediction model from "small data" obtained via the hybrid functional method using data from the generalized-gradient-approximation method and transfer learning. Using this model, heat-shielding materials were comprehensively investigated, and potential candidates, such as RE2BiO2 (RE = Ho, Dy, Tb, and Gd), Ba-containing materials, KAgF3, RbAgCl3, and Sr–Cu–O systems that were not previously considered heat-shielding materials, were identified. The absorption cross section for the material nanoparticles was calculated, and the influence of the nanoparticle shape on the heat-shielding properties was also analyzed. Because synthesizing nanoparticles of the abovementioned materials is cheaper than synthesizing nanoparticles of conventional heat-shielding nanoparticle-based materials, we expect that these nanoparticle-based materials will be used in heat-shielding windows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
鲨鱼辣椒发布了新的文献求助10
刚刚
刚刚
qyang完成签到 ,获得积分10
1秒前
潇洒半仙发布了新的文献求助10
1秒前
orixero应助古乙丁三雨采纳,获得10
1秒前
百家晨发布了新的文献求助10
1秒前
三十三天发布了新的文献求助10
1秒前
water应助fool采纳,获得10
1秒前
慕青应助ligq采纳,获得10
2秒前
2秒前
2秒前
fan发布了新的文献求助10
3秒前
深情安青应助杨诗梦采纳,获得10
3秒前
moon发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
Orange应助77采纳,获得10
3秒前
3秒前
大个应助活泼的路人采纳,获得10
3秒前
zenoalter完成签到,获得积分10
6秒前
zzzh发布了新的文献求助10
7秒前
zuan发布了新的文献求助10
7秒前
8秒前
嘻嘻应助ramu采纳,获得10
8秒前
11秒前
Hello应助冰美式采纳,获得10
11秒前
ligq完成签到,获得积分10
11秒前
12秒前
12秒前
罗劲松完成签到,获得积分10
13秒前
14秒前
矢车菊完成签到 ,获得积分10
14秒前
Orange应助Rickstein采纳,获得10
15秒前
无花果应助zzzh采纳,获得10
15秒前
斯文败类应助ligq采纳,获得10
16秒前
17秒前
18秒前
善良晓博完成签到,获得积分10
18秒前
ebby发布了新的文献求助10
18秒前
19秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870452
求助须知:如何正确求助?哪些是违规求助? 3412639
关于积分的说明 10680272
捐赠科研通 3137063
什么是DOI,文献DOI怎么找? 1730577
邀请新用户注册赠送积分活动 834142
科研通“疑难数据库(出版商)”最低求助积分说明 781073