Transfer learning with pre-trained deep convolutional neural networks for the automatic assessment of liver steatosis in ultrasound images

卷积神经网络 脂肪变性 人工智能 接收机工作特性 脂肪肝 模式识别(心理学) 人工神经网络 灵敏度(控制系统) 深度学习 医学 脂肪变 超声波 像素 计算机科学 放射科 病理 内科学 疾病 电子工程 工程类
作者
Elena Codruța Gheorghe,Anca Ion,Ștefan Cristinel Udriștoiu,Andreea Valentina Iacob,Lucian Gheorghe Gruionu,Gabriel Gruionu,Larisa Săndulescu,Adrian Săftoiu
出处
期刊:Medical ultrasonography [SRUMB - Romanian Society for Ultrasonography in Medicine and Biology]
被引量:23
标识
DOI:10.11152/mu-2746
摘要

In this paper we proposed different architectures of convolutional neural network (CNN) to classify fatty liver disease in images using only pixels and diagnosis labels as input. We trained and validated our models using a dataset of 629 images consisting of 2 types of liver images, normal and liver steatosis.We assessed two pre-trained models of convolutional neural networks, Inception-v3 and VGG-16 using fine-tuning. Both models were pre-trained on ImageNet dataset to extract features from B-mode ultrasound liver images. The results obtained through these methods were compared for selecting the predictive model with the best performance metrics. We trained the two models using a dataset of 262 images of liver steatosis and 234 images of normal liver. We assessed the models using a dataset of 70 liver steatosis im-ages and 63 normal liver images.The proposed model that used Inception v3 obtained a 93.23% test accuracy with a sensitivity of 89.9%% and a precision of 96.6%, and areas under each receiver operating characteristic curves (ROC AUC) of 0.93. The other proposed model that used VGG-16, obtained a 90.77% test accuracy with a sensitivity of 88.9% and a precision of 92.85%, and areas under each receiver operating characteristic curves (ROC AUC) of 0.91.The deep learning algorithms that we proposed to detect steatosis and classify the images in normal and fatty liver images, yields an excellent test performance of over 90%. However, future larger studies are required in order to establish how these algorithms can be implemented in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
爆米花应助zaqqq采纳,获得10
3秒前
5秒前
uniphoton发布了新的文献求助10
6秒前
SQDHZJ完成签到,获得积分10
8秒前
Yon完成签到 ,获得积分10
10秒前
10秒前
隐形曼青应助iwhsgfes采纳,获得10
10秒前
12秒前
科研通AI2S应助徐佳乐采纳,获得10
14秒前
14秒前
WYN发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
俭朴夜香完成签到,获得积分10
18秒前
19秒前
xms2022发布了新的文献求助10
21秒前
周晏平发布了新的文献求助10
21秒前
Rein发布了新的文献求助10
22秒前
酷波er应助wenfeisun采纳,获得10
22秒前
23秒前
pazuzu发布了新的文献求助10
24秒前
慕青应助狂野的大公猪采纳,获得10
25秒前
25秒前
27秒前
pazuzu完成签到,获得积分20
29秒前
meng发布了新的文献求助10
30秒前
善学以致用应助周晏平采纳,获得30
30秒前
30秒前
徐佳乐发布了新的文献求助10
30秒前
31秒前
丘比特应助科研通管家采纳,获得10
31秒前
HEIKU应助科研通管家采纳,获得10
32秒前
赘婿应助科研通管家采纳,获得10
32秒前
32秒前
HEIKU应助科研通管家采纳,获得10
32秒前
HEIKU应助科研通管家采纳,获得10
32秒前
HEIKU应助科研通管家采纳,获得10
32秒前
大个应助科研通管家采纳,获得100
32秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648