DeepDILI: Deep Learning-Powered Drug-Induced Liver Injury Prediction Using Model-Level Representation

人工智能 代表(政治) 机器学习 药品 试验装置 计算机科学 集合(抽象数据类型) 深度学习 数量结构-活动关系 相关性 医学 药理学 数学 政治 程序设计语言 法学 政治学 几何学
作者
Ting Li,Weida Tong,Ruth Roberts,Zhichao Liu,Shraddha Thakkar
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:34 (2): 550-565 被引量:64
标识
DOI:10.1021/acs.chemrestox.0c00374
摘要

Drug-induced liver injury (DILI) is the most frequently reported single cause of safety-related withdrawal of marketed drugs. It is essential to identify drugs with DILI potential at the early stages of drug development. In this study, we describe a deep learning-powered DILI (DeepDILI) prediction model created by combining model-level representation generated by conventional machine learning (ML) algorithms with a deep learning framework based on Mold2 descriptors. We conducted a comprehensive evaluation of the proposed DeepDILI model performance by posing several critical questions: (1) Could the DILI potential of newly approved drugs be predicted by accumulated knowledge of early approved ones? (2) is model-level representation more informative than molecule-based representation for DILI prediction? and (3) could improved model explainability be established? For question 1, we developed the DeepDILI model using drugs approved before 1997 to predict the DILI potential of those approved thereafter. As a result, the DeepDILI model outperformed the five conventional ML algorithms and two state-of-the-art ensemble methods with a Matthews correlation coefficient (MCC) value of 0.331. For question 2, we demonstrated that the DeepDILI model's performance was significantly improved (i.e., a MCC improvement of 25.86% in test set) compared with deep neural networks based on molecule-based representation. For question 3, we found 21 chemical descriptors that were enriched, suggesting a strong association with DILI outcome. Furthermore, we found that the DeepDILI model has more discrimination power to identify the DILI potential of drugs belonging to the World Health Organization therapeutic category of 'alimentary tract and metabolism'. Moreover, the DeepDILI model based on Mold2 descriptors outperformed the ones with Mol2vec and MACCS descriptors. Finally, the DeepDILI model was applied to the recent real-world problem of predicting any DILI concern for potential COVID-19 treatments from repositioning drug candidates. Altogether, this developed DeepDILI model could serve as a promising tool for screening for DILI risk of compounds in the preclinical setting, and the DeepDILI model is publicly available through https://github.com/TingLi2016/DeepDILI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
3秒前
4秒前
min完成签到,获得积分10
5秒前
5秒前
风格完成签到,获得积分10
6秒前
tqqwerty发布了新的文献求助10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
11秒前
Nicole完成签到,获得积分10
12秒前
樱花慕斯发布了新的文献求助10
12秒前
12秒前
刘一一一一一一完成签到,获得积分10
12秒前
Rui发布了新的文献求助10
13秒前
徐枘发布了新的文献求助10
13秒前
明仕春完成签到 ,获得积分10
13秒前
cwy发布了新的文献求助10
13秒前
14秒前
双丁宝贝发布了新的文献求助30
14秒前
yi完成签到,获得积分10
15秒前
天真酒窝发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
lhhy完成签到 ,获得积分10
18秒前
x仙贝完成签到,获得积分10
18秒前
淳于白凝发布了新的文献求助10
19秒前
科研通AI6应助周小荣采纳,获得30
19秒前
王柯发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助10
21秒前
Aom完成签到,获得积分10
21秒前
21秒前
21秒前
Ava应助糟糕的妙海采纳,获得10
22秒前
华仔应助phylicia采纳,获得10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4663495
求助须知:如何正确求助?哪些是违规求助? 4045304
关于积分的说明 12513037
捐赠科研通 3737731
什么是DOI,文献DOI怎么找? 2064069
邀请新用户注册赠送积分活动 1093700
科研通“疑难数据库(出版商)”最低求助积分说明 974309