Improvement in Land Cover and Crop Classification based on Temporal Features Learning from Sentinel-2 Data Using Recurrent-Convolutional Neural Network (R-CNN)

计算机科学 人工智能 卷积神经网络 支持向量机 土地覆盖 像素 随机森林 机器学习 深度学习 梯度升压 特征工程 模式识别(心理学) 特征(语言学) 特征提取 时间分辨率 遥感 土地利用 地理 语言学 土木工程 哲学 工程类 物理 量子力学
作者
Vittorio Mazzia,Aleem Khaliq,Marcello Chiaberge
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:10 (1): 238-238 被引量:119
标识
DOI:10.3390/app10010238
摘要

Understanding the use of current land cover, along with monitoring change over time, is vital for agronomists and agricultural agencies responsible for land management. The increasing spatial and temporal resolution of globally available satellite images, such as provided by Sentinel-2, creates new possibilities for researchers to use freely available multi-spectral optical images, with decametric spatial resolution and more frequent revisits for remote sensing applications such as land cover and crop classification (LC&CC), agricultural monitoring and management, environment monitoring. Existing solutions dedicated to cropland mapping can be categorized based on per-pixel based and object-based. However, it is still challenging when more classes of agricultural crops are considered at a massive scale. In this paper, a novel and optimal deep learning model for pixel-based LC&CC is developed and implemented based on Recurrent Neural Networks (RNN) in combination with Convolutional Neural Networks (CNN) using multi-temporal sentinel-2 imagery of central north part of Italy, which has diverse agricultural system dominated by economic crop types. The proposed methodology is capable of automated feature extraction by learning time correlation of multiple images, which reduces manual feature engineering and modeling crop phenological stages. Fifteen classes, including major agricultural crops, were considered in this study. We also tested other widely used traditional machine learning algorithms for comparison such as support vector machine SVM, random forest (RF), Kernal SVM, and gradient boosting machine, also called XGBoost. The overall accuracy achieved by our proposed Pixel R-CNN was 96.5%, which showed considerable improvements in comparison with existing mainstream methods. This study showed that Pixel R-CNN based model offers a highly accurate way to assess and employ time-series data for multi-temporal classification tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
beetes完成签到 ,获得积分10
1秒前
2秒前
深情安青应助夏侯丹烟采纳,获得10
2秒前
英姑应助玩命的若采纳,获得30
2秒前
2秒前
3秒前
肖123发布了新的文献求助10
3秒前
lxlcx应助lokiki鸭采纳,获得50
4秒前
111完成签到,获得积分10
4秒前
4秒前
小白菜完成签到,获得积分10
6秒前
jicm发布了新的文献求助10
6秒前
年轻月亮发布了新的文献求助10
6秒前
6秒前
fash发布了新的文献求助10
7秒前
Owen应助doubleyuans采纳,获得10
7秒前
idance发布了新的文献求助10
8秒前
科研通AI5应助梦梦采纳,获得10
8秒前
8秒前
万盼晴完成签到,获得积分10
9秒前
9秒前
Umwandlung完成签到,获得积分10
9秒前
科研通AI5应助Hammer采纳,获得10
9秒前
耶?发布了新的文献求助10
9秒前
情怀应助肖123采纳,获得10
9秒前
11秒前
11秒前
852应助王迪采纳,获得10
12秒前
yuchenmei发布了新的文献求助10
13秒前
小马甲应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
orixero应助科研通管家采纳,获得10
14秒前
Hello应助科研通管家采纳,获得10
15秒前
卡卡西应助科研通管家采纳,获得50
15秒前
脑洞疼应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
李李完成签到 ,获得积分10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
卡卡西应助科研通管家采纳,获得10
15秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802042
求助须知:如何正确求助?哪些是违规求助? 3347816
关于积分的说明 10334961
捐赠科研通 3063858
什么是DOI,文献DOI怎么找? 1682191
邀请新用户注册赠送积分活动 807941
科研通“疑难数据库(出版商)”最低求助积分说明 763969