The food neophobia scale (FNS): Exploration and confirmation of factor structure in a healthy Chinese sample

新恐怖症 心理学 验证性因素分析 探索性因素分析 样品(材料) 比例(比率) 可靠性(半导体) 特质 发展心理学 临床心理学 社会心理学 心理测量学 统计 结构方程建模 数学 计算机科学 化学 色谱法 程序设计语言 功率(物理) 物理 量子力学
作者
Jiubo Zhao,Zhibing Gao,Yaxian Li,Yile Wang,Xiaoyuan Zhang,Laiquan Zou
出处
期刊:Food Quality and Preference [Elsevier BV]
卷期号:79: 103791-103791 被引量:40
标识
DOI:10.1016/j.foodqual.2019.103791
摘要

Food neophobia, as a continuous personality trait, usually manifests in unwillingness to try, or even fear of trying unfamiliar food. The Food Neophobia Scale (FNS) is a measure designed to assess food neophobia. However, few studies have applied the FNS in a Chinese context. Therefore, this work aims to formulate and analyze a Chinese version of the FNS (FNS-C) using exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) with data gathered from a Chinese population. We examined the factor structure, reliability, and validity of the FNS-C by administering it to three samples, comprising a total of 1073 healthy Chinese college students. The first sample (N = 408) was used to examine the structure of the FNS for Chinese participants through EFA. The second sample (N = 615) was then used to verify the scale’s factor structure through CFA. Results of the EFA suggested a three-factor model (Willingness, Trust, and Pickiness), instead of the two-factor models identified in all previous studies. The CFA results confirm these findings in the second sample. The third sample (N = 50) was used to assess the test-retest reliability. The FNS-C was found to have good reliability (internal consistency and test-retest stability) and validity. In conclusion, the FNS has three factors among Chinese participants, and the FNS-C performs properly with Chinese college students.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kate发布了新的文献求助10
1秒前
和光同尘发布了新的文献求助10
1秒前
典雅雁梅完成签到,获得积分10
1秒前
微眠发布了新的文献求助10
2秒前
4秒前
浮游应助FSY采纳,获得10
4秒前
orixero应助爱听歌沉鱼采纳,获得10
4秒前
张志恒完成签到,获得积分10
4秒前
dan完成签到 ,获得积分10
6秒前
7秒前
7秒前
huanhuan完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
积极达发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
11秒前
ding应助zhang采纳,获得10
11秒前
luu发布了新的文献求助30
11秒前
科研通AI5应助XiYang采纳,获得10
12秒前
12秒前
称心的书双完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
Like发布了新的文献求助10
13秒前
13秒前
SZY发布了新的文献求助10
15秒前
感动又晴发布了新的文献求助10
16秒前
李健应助和光同尘采纳,获得30
16秒前
11发布了新的文献求助10
17秒前
18秒前
18秒前
Wdw2236完成签到,获得积分10
18秒前
cc完成签到,获得积分10
19秒前
20秒前
TuTu完成签到,获得积分10
20秒前
张志恒发布了新的文献求助10
20秒前
今后应助YDM采纳,获得10
20秒前
luu完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5074163
求助须知:如何正确求助?哪些是违规求助? 4294315
关于积分的说明 13380837
捐赠科研通 4115699
什么是DOI,文献DOI怎么找? 2253823
邀请新用户注册赠送积分活动 1258466
关于科研通互助平台的介绍 1191322