纳米-
黑色素瘤
材料科学
光动力疗法
纳米技术
对偶(语法数字)
化学
皮肤病科
癌症研究
复合材料
医学
艺术
文学类
有机化学
作者
Andreea Campu,Monica Focșan,Frédéric Lerouge,Raluca Borlan,Leopold Tie,Dumitriţa Ruginǎ,Simion Aștilean
标识
DOI:10.1016/j.colsurfb.2020.111213
摘要
A great amount of effort is directed towards the progress of cancer treatment approaches aspiring to develop non-invasive, targeted and highly efficient therapies. In this context, Photothermal (PTT) and Photodynamic (PDT) Therapies were proven as promising. This work aims to integrate the therapeutic activities of two near-infrared (NIR) photoactive biomaterials - gold nano-bipyramids (AuBPs) and Indocyanine Green (ICG) - into one single targeted hybrid nanosystem able to operate as dual PTT-PDT agent with higher efficiency compared with each one alone. Firstly, different aspect ratio’ AuBPs were systematically investigated in water solution for their intrinsic ability to efficiently generate toxic reactive oxygen species, namely oxygen singlet (1O2), under NIR laser irradiation, as this effect is less investigated in literature. Interestingly, the photodynamic activity of AuBPs measured by monitoring the photooxidation of 9,10-Anthracenediyl-bis(methylene)dimalonic acid (ABDA) – a well-known 1O2 sensor, is important, counting for 30 % decrease in ABDA optical absorbance for the most active AuBPs, well-correlating with the previously determined photothermal conversion efficiency. Furthermore, ICG was successfully grafted onto the Poly-lactic acid (PLA) coating of plasmonic nanoparticles and, consequently, the as-designed fully integrated hybrid nanosystem shows improved PTT-PDT performance in solution. Specifically, by triggering simultaneous PTT-PDT activities, the 1O2 amount is doubled, while the heating monitoring shows higher and faster increase in temperature compared to AuBPs alone. Finally, the efficiency of the combined PTT-PDT therapeutic activity was validated in vitro against B16-F10 cell line by covalent conjugation of the nanosystem with Folic Acid, which ensures the cellular recognition by overexpression of folate receptor.
科研通智能强力驱动
Strongly Powered by AbleSci AI