结晶学
晶体结构
Crystal(编程语言)
材料科学
X射线晶体学
化学
物理
衍射
计算机科学
光学
程序设计语言
作者
Mohammad Chahkandi,Abolfazl Keivanloo Shahrestanaki,Masoud Mirzaei,Muhammad Nawaz Tahir,Joel T. Mague
出处
期刊:Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
[Wiley]
日期:2020-07-09
卷期号:76 (4): 591-603
被引量:4
标识
DOI:10.1107/s2052520620006472
摘要
[Ni{2-H 2 NC(=O)C 5 H 4 N} 2 (H 2 O) 2 ][Ni{2,6-(O 2 C) 2 C 5 H 3 N} 2 ]·4.67H 2 O, a new complex salt containing a bis(2,6-dicarboxypyridine)nickel(II) anion and a bis(2-amidopyridine)diaquanickel(II) cation, was synthesized and characterized. The crystal is stabilized by an extensive network of hydrogen bonds. Alternate layers of anions and cations/water molecules parallel to (010) can be distinguished. Computational studies of the network packing of the title compound by high-level DFT-D/B3LYP calculations indicate stabilization of the networks with conventional and non-conventional intermolecular O—H...O, N—H...O and C—H...O hydrogen bonds along with π-stacking contacts. Due to the presence of water molecules and the importance of forming hydrogen bonds with the involvement of water clusters to the stability of the crystal packing, the importance and role of these water clusters, and the quantitative stability resulting from the formation of hydrogen bonds and possibly other noncovalent bonds such as π-stacking are examined. The binding energies obtained by DFT-D calculations for these contacts indicate that hydrogen bonds, especially O—H...O and N—H...O, control the construction of the crystalline packing. Additionally, the results of Bader's theory of AIM for these interactions agree reasonably well with the calculated energies.
科研通智能强力驱动
Strongly Powered by AbleSci AI