Classification of glomerular pathological findings using deep learning and nephrologist–AI collective intelligence approach

病态的 肾病科 人工智能 医学 计算机科学 心理学 内科学
作者
Eiichiro Uchino,Kanata Suzuki,Noriaki Sato,Ryosuke Kojima,Yoshinori Tamada,Shusuke Hiragi,Hideki Yokoi,Nobuhiro Yugami,Sachiko Minamiguchi,Hironori Haga,Motoko Yanagita,Yasushi Okuno
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:141: 104231-104231 被引量:75
标识
DOI:10.1016/j.ijmedinf.2020.104231
摘要

Conclusion: AI models for classifying 7 major findings of glomeruli were developed, which may improve clinicians' diagnostic accuracy. • Artificial intelligence models classified glomerular images of renal biopsy. • Seven major pathological findings were automatically classified by deep learning. • Majority decision among experts and our models can improve diagnostic performance. Automated classification of glomerular pathological findings is potentially beneficial in establishing an efficient and objective diagnosis in renal pathology. While previous studies have verified the artificial intelligence (AI) models for the classification of global sclerosis and glomerular cell proliferation, there are several other glomerular pathological findings required for diagnosis, and the comprehensive models for the classification of these major findings have not yet been reported. Whether the cooperation between these AI models and clinicians improves diagnostic performance also remains unknown. Here, we developed AI models to classify glomerular images for major findings required for pathological diagnosis and investigated whether those models could improve the diagnostic performance of nephrologists. We used a dataset of 283 kidney biopsy cases comprising 15,888 glomerular images that were annotated by a total of 25 nephrologists. AI models to classify seven pathological findings: global sclerosis, segmental sclerosis, endocapillary proliferation, mesangial matrix accumulation, mesangial cell proliferation, crescent, and basement membrane structural changes, were constructed using deep learning by fine-tuning of InceptionV3 convolutional neural network. Subsequently, we compared the agreement to truth labels between majority decision among nephrologists with or without the AI model as a voter. Our model for global sclerosis showed high performance (area under the curve: periodic acid-Schiff, 0.986; periodic acid methenamine silver, 0.983); the models for the other findings also showed performance close to those of nephrologists. By adding the AI model output to majority decision among nephrologists, out of the 14 constructed models, the results of the majority decision showed improvement in sensitivity for 10 models (four of them were statistically significant) and specificity for eight models (five significant). Our study showed a proof-of-concept for the classification of multiple glomerular findings in a comprehensive method of deep learning and suggested its potential effectiveness in improving diagnostic accuracy of clinicians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LaTeXer应助Shuo Yang采纳,获得60
刚刚
田様应助科研通管家采纳,获得10
刚刚
思源应助科研通管家采纳,获得10
刚刚
刚刚
量子星尘发布了新的文献求助10
刚刚
笑笑完成签到,获得积分10
3秒前
科研通AI2S应助包容的觅双采纳,获得10
3秒前
5秒前
Ava应助lc采纳,获得10
5秒前
5秒前
清爽饼干完成签到,获得积分10
7秒前
littleknees应助孙成成采纳,获得10
7秒前
FR发布了新的文献求助20
12秒前
一一应助littleknees采纳,获得50
12秒前
李健应助清爽饼干采纳,获得10
12秒前
18秒前
传奇3应助小卒采纳,获得10
20秒前
21秒前
NexusExplorer应助胡呼呼采纳,获得10
21秒前
叮叮当当给叮叮当当的求助进行了留言
21秒前
量子星尘发布了新的文献求助10
22秒前
yangmo发布了新的文献求助10
24秒前
25秒前
27秒前
狗着发布了新的文献求助10
28秒前
31秒前
小卒发布了新的文献求助10
32秒前
许问发布了新的文献求助10
32秒前
scxl2000完成签到 ,获得积分10
33秒前
端庄毛巾发布了新的文献求助10
34秒前
34秒前
35秒前
狗着完成签到,获得积分10
37秒前
小卒完成签到,获得积分10
39秒前
量子星尘发布了新的文献求助10
39秒前
40秒前
40秒前
40秒前
甜蜜乐松完成签到 ,获得积分10
41秒前
英俊的铭应助醉酒笑红尘采纳,获得10
41秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867153
求助须知:如何正确求助?哪些是违规求助? 3409400
关于积分的说明 10663450
捐赠科研通 3133586
什么是DOI,文献DOI怎么找? 1728300
邀请新用户注册赠送积分活动 832879
科研通“疑难数据库(出版商)”最低求助积分说明 780510