Deep Convolutional Neural Network–based Software Improves Radiologist Detection of Malignant Lung Nodules on Chest Radiographs

医学 射线照相术 放射科 卷积神经网络 人工智能 内科学 计算机科学
作者
Yongsik Sim,Myung Jin Chung,Elmar Kotter,Sehyo Yune,Myeongchan Kim,Synho Do,Kyunghwa Han,Hanmyoung Kim,Seungwook Yang,Dong-Jae Lee,Byoung Wook Choi
出处
期刊:Radiology [Radiological Society of North America]
卷期号:294 (1): 199-209 被引量:207
标识
DOI:10.1148/radiol.2019182465
摘要

Background Multicenter studies are required to validate the added benefit of using deep convolutional neural network (DCNN) software for detecting malignant pulmonary nodules on chest radiographs. Purpose To compare the performance of radiologists in detecting malignant pulmonary nodules on chest radiographs when assisted by deep learning–based DCNN software with that of radiologists or DCNN software alone in a multicenter setting. Materials and Methods Investigators at four medical centers retrospectively identified 600 lung cancer–containing chest radiographs and 200 normal chest radiographs. Each radiograph with a lung cancer had at least one malignant nodule confirmed by CT and pathologic examination. Twelve radiologists from the four centers independently analyzed the chest radiographs and marked regions of interest. Commercially available deep learning–based computer-aided detection software separately trained, tested, and validated with 19 330 radiographs was used to find suspicious nodules. The radiologists then reviewed the images with the assistance of DCNN software. The sensitivity and number of false-positive findings per image of DCNN software, radiologists alone, and radiologists with the use of DCNN software were analyzed by using logistic regression and Poisson regression. Results The average sensitivity of radiologists improved (from 65.1% [1375 of 2112; 95% confidence interval {CI}: 62.0%, 68.1%] to 70.3% [1484 of 2112; 95% CI: 67.2%, 73.1%], P < .001) and the number of false-positive findings per radiograph declined (from 0.2 [488 of 2400; 95% CI: 0.18, 0.22] to 0.18 [422 of 2400; 95% CI: 0.16, 0.2], P < .001) when the radiologists re-reviewed radiographs with the DCNN software. For the 12 radiologists in this study, 104 of 2400 radiographs were positively changed (from false-negative to true-positive or from false-positive to true-negative) using the DCNN, while 56 of 2400 radiographs were changed negatively. Conclusion Radiologists had better performance with deep convolutional network software for the detection of malignant pulmonary nodules on chest radiographs than without. © RSNA, 2019 Online supplemental material is available for this article. See also the editorial by Jacobson in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
song完成签到,获得积分10
刚刚
简单豆芽发布了新的文献求助10
1秒前
1秒前
Owen应助秋天里的水采纳,获得10
3秒前
Orange应助song采纳,获得10
5秒前
7秒前
田様应助chen采纳,获得10
8秒前
小二郎应助小怪采纳,获得10
10秒前
洛洛完成签到 ,获得积分10
12秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
kaka完成签到,获得积分10
16秒前
19秒前
CipherSage应助Liuu采纳,获得10
20秒前
希望天下0贩的0应助小怪采纳,获得10
20秒前
酷波er应助简单豆芽采纳,获得10
24秒前
24秒前
25秒前
随缘完成签到,获得积分10
25秒前
25秒前
26秒前
秋天里的水完成签到,获得积分10
26秒前
夏飞飞发布了新的文献求助10
29秒前
Shawn发布了新的文献求助10
29秒前
陈晓真完成签到 ,获得积分10
30秒前
圩垸应助科研通管家采纳,获得10
30秒前
英姑应助科研通管家采纳,获得10
30秒前
柚子应助科研通管家采纳,获得10
30秒前
科研通AI6应助科研通管家采纳,获得50
30秒前
赘婿应助科研通管家采纳,获得10
30秒前
小二郎应助科研通管家采纳,获得10
31秒前
华仔应助科研通管家采纳,获得10
31秒前
Meyako应助科研通管家采纳,获得20
31秒前
小马甲应助科研通管家采纳,获得10
31秒前
31秒前
顺利的琳应助科研通管家采纳,获得10
31秒前
31秒前
holmes完成签到 ,获得积分10
34秒前
36秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4212613
求助须知:如何正确求助?哪些是违规求助? 3746890
关于积分的说明 11789205
捐赠科研通 3414476
什么是DOI,文献DOI怎么找? 1873711
邀请新用户注册赠送积分活动 928097
科研通“疑难数据库(出版商)”最低求助积分说明 837398