分形
泰勒级数
数学
系列(地层学)
分形导数
同伦摄动方法
应用数学
简单(哲学)
同伦
静电纺丝
数学分析
牙石(牙科)
过程(计算)
分形维数
分形分析
计算机科学
物理
纯数学
操作系统
哲学
认识论
生物
古生物学
医学
牙科
聚合物
核磁共振
作者
Chun‐Hui He,Yue Shen,Fei-Yu Ji,Ji‐Huan He
出处
期刊:Fractals
[World Scientific]
日期:2019-11-05
卷期号:28 (01): 2050011-2050011
被引量:186
标识
DOI:10.1142/s0218348x20500115
摘要
Electrospinning is a complex process, and it can be modeled by a Bratu-type equation with fractal derivatives by taking into account the solvent evaporation. Though there are many analytical methods available for such a problem, e.g. the variational iteration method and the homotopy perturbation method, a straightforward method with a simple solution process and high accurate results is much needed. This paper applies the Taylor series technology to fractal calculus, and an analytical approximate solution is obtained. A fractal variational principle is also discussed. As the Taylor series is accessible to all non-mathematicians, this paper sheds a bright light on practical applications of fractal calculus.
科研通智能强力驱动
Strongly Powered by AbleSci AI