Imbalance Data Processing Strategy for Protein Interaction Sites Prediction

蛋白质-蛋白质相互作用 计算机科学 鉴定(生物学) 机器学习 数据挖掘 人工智能 化学 生物 生物化学 植物
作者
Bing Wang,Changqing Mei,Yuanyuan Wang,Yuming Zhou,Mu-Tian Cheng,Chun-Hou Zheng,Lei Wang,Jun Zhang,Peng Chen,Yan Xiong
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:18 (3): 985-994 被引量:24
标识
DOI:10.1109/tcbb.2019.2953908
摘要

Protein-protein interactions play essential roles in various biological progresses. Identifying protein interaction sites can facilitate researchers to understand life activities and therefore will be helpful for drug design. However, the number of experimental determined protein interaction sites is far less than that of protein sites in protein-protein interaction or protein complexes. Therefore, the negative and positive samples are usually imbalanced, which is common but bring result bias on the prediction of protein interaction sites by computational approaches. In this work, we presented three imbalance data processing strategies to reconstruct the original dataset, and then extracted protein features from the evolutionary conservation of amino acids to build a predictor for identification of protein interaction sites. On a dataset with 10,430 surface residues but only 2,299 interface residues, the imbalance dataset processing strategies can obviously reduce the prediction bias, and therefore improve the prediction performance of protein interaction sites. The experimental results show that our prediction models can achieve a better prediction performance, such as a prediction accuracy of 0.758, or a high F-measure of 0.737, which demonstrated the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助阿文采纳,获得10
刚刚
万默发布了新的文献求助10
1秒前
复杂不二完成签到,获得积分10
1秒前
充电宝应助顺利凌文采纳,获得10
1秒前
光夜完成签到 ,获得积分10
2秒前
生生完成签到,获得积分10
2秒前
Ngu完成签到,获得积分0
2秒前
郭宇发布了新的文献求助10
3秒前
斯文败类应助adfasd采纳,获得10
4秒前
宫野珏发布了新的文献求助10
4秒前
善学以致用应助顺利凌文采纳,获得10
4秒前
是然发布了新的文献求助10
5秒前
科研通AI5应助木木采纳,获得10
6秒前
123完成签到,获得积分10
6秒前
大模型应助孤岛采纳,获得10
6秒前
asdfg123发布了新的文献求助10
7秒前
7秒前
Akim应助顺利凌文采纳,获得10
8秒前
鸠摩智完成签到,获得积分10
8秒前
9秒前
Star应助shYnEss采纳,获得20
9秒前
10秒前
靓丽幻梅关注了科研通微信公众号
10秒前
10秒前
科研通AI5应助yingzi采纳,获得10
10秒前
老包发布了新的文献求助10
10秒前
11秒前
俭朴的晓蓝关注了科研通微信公众号
11秒前
NexusExplorer应助大昕采纳,获得10
13秒前
NexusExplorer应助失眠采白采纳,获得10
13秒前
爱吃泡芙发布了新的文献求助30
14秒前
14秒前
田様应助024680采纳,获得10
15秒前
WW发布了新的文献求助10
15秒前
15秒前
15秒前
asdfg123完成签到,获得积分10
15秒前
英姑应助ray采纳,获得10
15秒前
卡卡西应助如既采纳,获得20
16秒前
是然完成签到,获得积分10
16秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3809336
求助须知:如何正确求助?哪些是违规求助? 3353975
关于积分的说明 10368046
捐赠科研通 3070223
什么是DOI,文献DOI怎么找? 1686108
邀请新用户注册赠送积分活动 810813
科研通“疑难数据库(出版商)”最低求助积分说明 766384