Machine learning-assisted enzyme engineering

定向进化 热稳定性 定向分子进化 序列空间 生化工程 合理设计 蛋白质工程 人工智能 蛋白质设计 计算机科学 机器学习 生物化学 工程类 纳米技术 蛋白质结构 数学 化学 材料科学 巴拿赫空间 突变体 基因 纯数学
作者
Niklas E. Siedhoff,Ulrich Schwaneberg,Mehdi D. Davari
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:: 281-315 被引量:80
标识
DOI:10.1016/bs.mie.2020.05.005
摘要

Directed evolution and rational design are powerful strategies in protein engineering to tailor enzyme properties to meet the demands in academia and industry. Traditional approaches for enzyme engineering and directed evolution are often experimentally driven, in particular when the protein structure–function relationship is not available. Though they have been successfully applied to engineer many enzymes, these methods are still facing significant challenges due to the tremendous size of the protein sequence space and the combinatorial problem. It can be ascertained that current experimental techniques and computational techniques might never be able to sample through the entire protein sequence space and benefit from nature's full potential for the generation of better enzymes. With advancements in next generation sequencing, high throughput screening methods, the growth of protein databases and artificial intelligence, especially machine learning (ML), data-driven enzyme engineering is emerging as a promising solution to these challenges. To date, ML-assisted approaches have efficiently and accurately determined the quantitative structure-property/activity relationship for the prediction of diverse enzyme properties. In addition, enzyme engineering can be accelerated much faster than ever through the combination of experimental library generation and ML-based prediction. In this chapter, we review the recent progresses in ML-assisted enzyme engineering and highlight several successful examples (e.g., to enhance activity, enantioselectivity, or thermostability). Herein we explain enzyme engineering strategies that combine random or (semi-)rational approaches with ML methods and allow an effective reengineering of enzymes to improve targeted properties. We further discuss the main challenges to solve in order to realize the full potential of ML methods in enzyme engineering. Finally, we describe the current limitations of ML-assisted enzyme engineering, and our perspective on future opportunities in this growing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zac完成签到,获得积分10
1秒前
Jasper应助司徒诗蕾采纳,获得10
8秒前
8秒前
Aseky完成签到,获得积分10
8秒前
9秒前
Carol完成签到,获得积分10
10秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
电致阿光发布了新的文献求助10
15秒前
Captain发布了新的文献求助10
16秒前
cyyy发布了新的文献求助10
18秒前
小马甲应助科研通管家采纳,获得10
20秒前
无花果应助科研通管家采纳,获得10
20秒前
20秒前
赘婿应助科研通管家采纳,获得10
20秒前
bkagyin应助科研通管家采纳,获得10
20秒前
小蘑菇应助科研通管家采纳,获得10
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
顾矜应助科研通管家采纳,获得50
21秒前
21秒前
21秒前
28秒前
Double_N完成签到,获得积分10
30秒前
Orange应助zww采纳,获得10
33秒前
英俊的铭应助善良的冷雁采纳,获得10
34秒前
36秒前
游一发布了新的文献求助10
39秒前
周运完成签到 ,获得积分10
46秒前
量子星尘发布了新的文献求助10
46秒前
感动的芝麻完成签到,获得积分10
48秒前
打打应助李某采纳,获得10
49秒前
海藻完成签到,获得积分10
50秒前
CH完成签到,获得积分10
53秒前
57秒前
58秒前
无聊的火龙果应助兰蕙采纳,获得20
1分钟前
1分钟前
热心的善愁完成签到,获得积分10
1分钟前
hoyan发布了新的文献求助10
1分钟前
Ava应助白俊峰采纳,获得10
1分钟前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3863343
求助须知:如何正确求助?哪些是违规求助? 3405692
关于积分的说明 10646171
捐赠科研通 3129361
什么是DOI,文献DOI怎么找? 1725885
邀请新用户注册赠送积分活动 831265
科研通“疑难数据库(出版商)”最低求助积分说明 779732