Machine learning-assisted enzyme engineering

定向进化 热稳定性 定向分子进化 序列空间 生化工程 合理设计 蛋白质工程 人工智能 蛋白质设计 计算机科学 机器学习 生物化学 工程类 纳米技术 蛋白质结构 数学 化学 材料科学 基因 突变体 纯数学 巴拿赫空间
作者
Niklas E. Siedhoff,Ulrich Schwaneberg,Mehdi D. Davari
出处
期刊:Methods in Enzymology [Academic Press]
卷期号:643: 281-315 被引量:104
标识
DOI:10.1016/bs.mie.2020.05.005
摘要

Directed evolution and rational design are powerful strategies in protein engineering to tailor enzyme properties to meet the demands in academia and industry. Traditional approaches for enzyme engineering and directed evolution are often experimentally driven, in particular when the protein structure–function relationship is not available. Though they have been successfully applied to engineer many enzymes, these methods are still facing significant challenges due to the tremendous size of the protein sequence space and the combinatorial problem. It can be ascertained that current experimental techniques and computational techniques might never be able to sample through the entire protein sequence space and benefit from nature's full potential for the generation of better enzymes. With advancements in next generation sequencing, high throughput screening methods, the growth of protein databases and artificial intelligence, especially machine learning (ML), data-driven enzyme engineering is emerging as a promising solution to these challenges. To date, ML-assisted approaches have efficiently and accurately determined the quantitative structure-property/activity relationship for the prediction of diverse enzyme properties. In addition, enzyme engineering can be accelerated much faster than ever through the combination of experimental library generation and ML-based prediction. In this chapter, we review the recent progresses in ML-assisted enzyme engineering and highlight several successful examples (e.g., to enhance activity, enantioselectivity, or thermostability). Herein we explain enzyme engineering strategies that combine random or (semi-)rational approaches with ML methods and allow an effective reengineering of enzymes to improve targeted properties. We further discuss the main challenges to solve in order to realize the full potential of ML methods in enzyme engineering. Finally, we describe the current limitations of ML-assisted enzyme engineering, and our perspective on future opportunities in this growing field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
向聿发布了新的文献求助10
刚刚
隔壁老王完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
华仔应助丹妮采纳,获得10
2秒前
3秒前
好好学习发布了新的文献求助10
3秒前
大奎完成签到,获得积分10
3秒前
瘦瘦完成签到,获得积分10
5秒前
含蓄文博完成签到 ,获得积分10
5秒前
Strawberry完成签到,获得积分10
5秒前
6秒前
辛勤完成签到 ,获得积分10
6秒前
无花果应助风起人散采纳,获得10
6秒前
彩色夜阑完成签到,获得积分10
6秒前
面壁思过应助咕咕咕采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
顾矜应助早日毕业佳采纳,获得10
7秒前
7秒前
搜集达人应助哈哈哈哈哈采纳,获得10
8秒前
公龟应助tcl1998采纳,获得10
8秒前
111完成签到,获得积分10
8秒前
8秒前
key完成签到,获得积分10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
含蓄诗槐应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
棋士应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
彭于晏应助科研通管家采纳,获得10
10秒前
tiptip应助科研通管家采纳,获得10
10秒前
时来运转发布了新的文献求助10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
宋宋发布了新的文献求助10
10秒前
棋士应助科研通管家采纳,获得10
10秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701013
求助须知:如何正确求助?哪些是违规求助? 5141803
关于积分的说明 15232611
捐赠科研通 4856117
什么是DOI,文献DOI怎么找? 2605623
邀请新用户注册赠送积分活动 1556993
关于科研通互助平台的介绍 1515065