Using machine learning to develop an autoverification system in a clinical biochemistry laboratory

临床生物化学 计算机科学 医学教育 认知科学 医学物理学 人工智能 生物化学 心理学 化学 医学
作者
Hongchun Wang,Huayang Wang,Jian Zhang,Xiaoli Li,Chengxi Sun,Yi Zhang
出处
期刊:Clinical Chemistry and Laboratory Medicine [De Gruyter]
卷期号:59 (5): 883-891 被引量:22
标识
DOI:10.1515/cclm-2020-0716
摘要

Abstract Objectives Autoverification systems have greatly improved laboratory efficiency. However, the long-developed rule-based autoverfication models have limitations. The machine learning (ML) algorithm possesses unique advantages in the evaluation of large datasets. We investigated the utility of ML algorithms for developing an artificial intelligence (AI) autoverification system to support laboratory testing. The accuracy and efficiency of the algorithm model were also validated. Methods Testing data, including 52 testing items with demographic information, were extracted from the laboratory information system and Roche Cobas ® IT 3000 from June 1, 2018 to August 30, 2019. Two rounds of modeling were conducted to train different ML algorithms and test their abilities to distinguish invalid reports. Algorithms with the top three best performances were selected to form the finalized ensemble model. Double-blind testing between experienced laboratory personnel and the AI autoverification system was conducted, and the passing rate and false-negative rate (FNR) were documented. The working efficiency and workload reduction were also analyzed. Results The final AI system showed a 89.60% passing rate and 0.95 per mille FNR, in double-blind testing. The AI system lowered the number of invalid reports by approximately 80% compared to those evaluated by a rule-based engine, and therefore enhanced the working efficiency and reduced the workload in the biochemistry laboratory. Conclusions We confirmed the feasibility of the ML algorithm for autoverification with high accuracy and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安妮发布了新的文献求助10
刚刚
元谷雪发布了新的文献求助10
刚刚
彭于晏应助cistronic采纳,获得10
刚刚
1秒前
1秒前
1秒前
海棠完成签到,获得积分10
1秒前
12344555发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
李健应助诚心的尔冬采纳,获得10
2秒前
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
烟花应助科研通管家采纳,获得20
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
烟花应助科研通管家采纳,获得20
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
luochunsheng关注了科研通微信公众号
2秒前
orixero应助科研通管家采纳,获得10
2秒前
情怀应助科研通管家采纳,获得10
2秒前
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760949
求助须知:如何正确求助?哪些是违规求助? 5526930
关于积分的说明 15398694
捐赠科研通 4897597
什么是DOI,文献DOI怎么找? 2634253
邀请新用户注册赠送积分活动 1582378
关于科研通互助平台的介绍 1537706