Multi-attribute decision making: An innovative method based on the dynamic credibility of experts

加权 可靠性 正确性 排名(信息检索) 计算机科学 数据挖掘 决策矩阵 层次分析法 数学 人工智能 运筹学 算法 医学 政治学 法学 放射科
作者
Zhigang Zhang,Xiao Hu,Zhao-Ting Liu,Lian Zhao
出处
期刊:Applied Mathematics and Computation [Elsevier BV]
卷期号:393: 125816-125816 被引量:10
标识
DOI:10.1016/j.amc.2020.125816
摘要

Multi-attribute decision making has become a topic of interest for scholars because it can comprehensively and effectively be used to make decisions in situations in which there are multiple homogeneous options. Attribute weighting is an important step and has a significant impact on decision-making, and the subjective weighting method is commonly used in reality. However, as experts have different knowledge, experiences, preferences and so on, the weights of attributes given by experts are subjective. So expert credibility affects the final weights, and the correctness of the weights calculated in this case cannot be guaranteed. Therefore, the dynamic expert credibility model (DECM) is proposed. First, based on the decision matrix and the weight evaluation matrix, the method for calculating distance-based expert credibility calculates the distance between expert evaluations via the score deviation and ranking deviation. Second, considering the differences in the weight evaluation matrix caused by changes in the individual background of the experts, the expert background change process (EBCP) is proposed. Third, the dynamic value of credibility before and after the EBCP can be calculated. To prove the validity of the model, a test method is proposed from the perspective of data envelopment analysis. Finally, evaluations on industrial economic benefits of 16 provinces or municipalities in China are conducted to illustrate the applicability of the proposed model in practice. Using the test, DECM effectively eliminates the influence of the weight calculation due to expert credibility. After the EBCP, the target value of the DECM reaches 6.0989 and the validity of attribute weights is improved by 2.30%. Compared with the traditional weight determination method, the decision-making result under the DECM is consistent.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
许愿非树完成签到,获得积分10
4秒前
5秒前
6秒前
慕青应助等待盼雁采纳,获得10
8秒前
南城花开完成签到 ,获得积分10
8秒前
9秒前
友好的翅膀发布了新的文献求助200
9秒前
慕青应助晶晶采纳,获得10
13秒前
devilito发布了新的文献求助10
13秒前
xing完成签到,获得积分10
14秒前
14秒前
16秒前
Macaco完成签到,获得积分10
18秒前
lll发布了新的文献求助10
18秒前
等待盼雁发布了新的文献求助10
20秒前
我是老大应助刘搞笑采纳,获得10
24秒前
狂野凝竹完成签到,获得积分10
26秒前
淞33完成签到 ,获得积分10
27秒前
PSCs完成签到,获得积分10
28秒前
华仔应助狂野凝竹采纳,获得10
33秒前
34秒前
34秒前
科研通AI5应助ZHou采纳,获得10
35秒前
36秒前
Cherrita完成签到,获得积分10
36秒前
36秒前
Cherrita发布了新的文献求助10
40秒前
晶晶发布了新的文献求助10
40秒前
小任性发布了新的文献求助10
42秒前
43秒前
葛怀锐完成签到 ,获得积分10
43秒前
lll完成签到,获得积分10
44秒前
48秒前
北风应助SCI采纳,获得10
49秒前
51秒前
科研通AI5应助不安梦桃采纳,获得10
53秒前
okjiujiu发布了新的文献求助10
55秒前
shadow发布了新的文献求助10
55秒前
英姑应助kai采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415