Application of ensemble learning to genomic selection in chinese simmental beef cattle

阿达布思 机器学习 人工智能 最佳线性无偏预测 支持向量机 随机森林 选择(遗传算法) 计算机科学 特征选择 基因组选择 统计 生物 数学 遗传学 基因型 基因 单核苷酸多态性
作者
Mang Liang,Jian Miao,Xiaoqiao Wang,Tianpeng Chang,Bingxing An,Xinghai Duan,Lingyang Xu,Xue Gao,Lupei Zhang,Junya Li,Huijiang Gao
出处
期刊:Journal of Animal Breeding and Genetics [Wiley]
卷期号:138 (3): 291-299 被引量:25
标识
DOI:10.1111/jbg.12514
摘要

Abstract Genomic selection (GS) using the whole‐genome molecular makers to predict genomic estimated breeding values (GEBVs) is revolutionizing the livestock and plant breeding. Seeking out novel strategies with higher prediction accuracy for GS has been the ultimate goal of breeders. With the rapid development of artificial intelligence, machine learning algorithms were applied to estimate the GEBVs increasingly. Although some machine learning methods have better performance in phenotype prediction, there is still considerable room for improvement. In this study, we applied an ensemble‐learning algorithm, Adaboost.RT, which integrated support vector regression (SVR), kernel ridge regression (KRR) and random forest (RF), to predict genomic breeding values of three economic traits (carcass weight, live weight, and eye muscle area) in Chinese Simmental beef cattle. Predictive accuracy measured as the Pearson correlation between the corrected phenotypes and predicted GEBVs. Moreover, we compared the reliability of SVR, KRR, RF, Adaboost.RT and GBLUP methods. The result showed that machine learning methods outperformed GBLUP, and the average improvement of four machine learning methods over the GBLUP was 12.8%, 14.9%, 5.4% and 14.4%, respectively. Among the four machine learning methods, the reliability of Adaboost.RT was comparable to KRR with higher stability. We therefore believe that the Adaboost.RT algorithm is a reliable and efficient method for GS.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Luloo发布了新的文献求助30
刚刚
boron发布了新的文献求助10
刚刚
英姑应助绵绵采纳,获得10
1秒前
哈哈完成签到,获得积分10
2秒前
2秒前
朱博超完成签到,获得积分10
3秒前
小小杜发布了新的文献求助10
6秒前
养生坤坤完成签到,获得积分10
7秒前
Luloo完成签到,获得积分10
7秒前
我是125发布了新的文献求助10
8秒前
红莲墨生发布了新的文献求助10
9秒前
YCW完成签到,获得积分10
10秒前
务实的听筠完成签到,获得积分20
11秒前
打打应助111采纳,获得10
12秒前
碧蓝的冷卉完成签到,获得积分10
12秒前
菜鸟一枚完成签到,获得积分10
14秒前
乐观静蕾完成签到,获得积分10
14秒前
orixero应助大马哈鱼采纳,获得10
17秒前
18秒前
18秒前
开心的桔子完成签到 ,获得积分10
20秒前
21秒前
22秒前
24秒前
kkk发布了新的文献求助10
26秒前
26秒前
花城发布了新的文献求助10
28秒前
HEIKU应助左右左采纳,获得10
28秒前
29秒前
大马哈鱼发布了新的文献求助10
30秒前
周日不上发条应助小小杜采纳,获得10
30秒前
最最最发布了新的文献求助10
31秒前
阳yang完成签到,获得积分10
31秒前
传奇3应助916采纳,获得10
31秒前
32秒前
boron完成签到,获得积分10
33秒前
34秒前
忧郁的晓蓝关注了科研通微信公众号
36秒前
绵绵发布了新的文献求助10
38秒前
权邴驳回了Akim应助
39秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800724
求助须知:如何正确求助?哪些是违规求助? 3346137
关于积分的说明 10328389
捐赠科研通 3062617
什么是DOI,文献DOI怎么找? 1681025
邀请新用户注册赠送积分活动 807369
科研通“疑难数据库(出版商)”最低求助积分说明 763646