Development of a prediction model for hypotension after induction of anesthesia using machine learning

医学 插管 麻醉 气管插管 逻辑回归 血压 置信区间 平均动脉压 接收机工作特性 不利影响 心率 内科学
作者
Ah Reum Kang,Ji–Hyun Lee,Woohyun Jung,Misoon Lee,Sun Young Park,Jiyoung Woo,Sang Hyun Kim
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:15 (4): e0231172-e0231172 被引量:35
标识
DOI:10.1371/journal.pone.0231172
摘要

Arterial hypotension during the early phase of anesthesia can lead to adverse outcomes such as a prolonged postoperative stay or even death. Predicting hypotension during anesthesia induction is complicated by its diverse causes. We investigated the feasibility of developing a machine-learning model to predict postinduction hypotension. Naïve Bayes, logistic regression, random forest, and artificial neural network models were trained to predict postinduction hypotension, occurring between tracheal intubation and incision, using data for the period from between the start of anesthesia induction and immediately before tracheal intubation obtained from an anesthesia monitor, a drug administration infusion pump, an anesthesia machine, and from patients’ demographics, together with preexisting disease information from electronic health records. Among 222 patients, 126 developed postinduction hypotension. The random-forest model showed the best performance, with an area under the receiver operating characteristic curve of 0.842 (95% confidence interval [CI]: 0.736-0.948). This was higher than that for the Naïve Bayes (0.778; 95% CI: 0.65-0.898), logistic regression (0.756; 95% CI: 0.630-0.881), and artificial-neural-network (0.760; 95% CI: 0.640-0.880) models. The most important features affecting the accuracy of machine-learning prediction were a patient’s lowest systolic blood pressure, lowest mean blood pressure, and mean systolic blood pressure before tracheal intubation. We found that machine-learning models using data obtained from various anesthesia machines between the start of anesthesia induction and immediately before tracheal intubation can predict hypotension occurring during the period between tracheal intubation and incision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚美阁发布了新的文献求助10
1秒前
Master发布了新的文献求助10
2秒前
ZZ发布了新的文献求助10
3秒前
jenningseastera应助duduguai采纳,获得10
4秒前
4秒前
闪闪落雁完成签到,获得积分10
6秒前
文天发布了新的文献求助10
6秒前
7秒前
Agan完成签到,获得积分10
10秒前
zhhh发布了新的文献求助10
10秒前
Djo完成签到,获得积分10
11秒前
斯文败类应助难过盼海采纳,获得10
14秒前
15秒前
Flame完成签到,获得积分10
17秒前
小朱完成签到,获得积分10
19秒前
小唐发布了新的文献求助10
20秒前
Flame发布了新的文献求助10
22秒前
胖虎爱睡觉完成签到,获得积分10
26秒前
27秒前
Dian完成签到,获得积分10
29秒前
30秒前
31秒前
ZZ完成签到,获得积分20
32秒前
33秒前
34秒前
难过盼海发布了新的文献求助10
35秒前
Eleven完成签到,获得积分10
35秒前
yasen发布了新的文献求助10
36秒前
JamesPei应助活力酒窝采纳,获得10
36秒前
38秒前
充电宝应助虚拟的惜筠采纳,获得10
39秒前
李振华完成签到,获得积分20
40秒前
大方元风发布了新的文献求助30
40秒前
THEO发布了新的文献求助10
40秒前
蔡蔡蔡发布了新的文献求助10
43秒前
小马甲应助薄荷味采纳,获得10
43秒前
花景铭完成签到,获得积分10
43秒前
44秒前
科目三应助大成子采纳,获得10
44秒前
田様应助难过盼海采纳,获得10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327234
关于积分的说明 10230111
捐赠科研通 3042093
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799335
科研通“疑难数据库(出版商)”最低求助积分说明 758774