Interfacial Oxygen Vacancy Engineered Two-Dimensional g-C3N4/BiOCl Heterostructures with Boosted Photocatalytic Conversion of CO2

异质结 光催化 材料科学 载流子 能量转换效率 氧气 纳米技术 载流子密度 光电子学 化学 催化作用 兴奋剂 生物化学 有机化学
作者
Yi Chen,Fang Wang,Yuehan Cao,Fengying Zhang,Yanzhao Zou,Zeai Huang,Liqun Ye,Ying Zhou
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:3 (5): 4610-4618 被引量:115
标识
DOI:10.1021/acsaem.0c00273
摘要

The CO2 conversion by photocatalysis has been a focus of global concern as yet, and the exploring of efficient heterostructures is critical to promote the photocatalytic performance. However, the weak interface contact largely limits the photogenerated carrier transfer and restrains the activities of heterostructures. In this work, two-dimensional (2D) g-C3N4/BiOCl heterostructures were exemplified to demonstrate a facile strategy of interfacial oxygen vacancies (IOVs) with enhanced interfacial interaction to promote the photocatalytic conversion of CO2. Both experimental results and density functional theory calculations determined that the IOVs can provide a transport channel for the interfacial carriers, leading to a built-in electric field from g-C3N4 to BiOCl and a Z-scheme type for IOVs-introduced g-C3N4/BiOCl heterostructures, which largely promoted the photogenerated carrier transfer efficiency. This further induced the generation of more electrons to participate in the surface reactions and significantly reduced the energy barriers for the CO2 reduction, especially facilitating the decomposition of intermediate COOH into CO. As a result, the photocatalytic activity of IOVs-introduced g-C3N4/BiOCl heterostructure for the conversion of CO2 to CO was enhanced by 1.6 times compared to pristine g-C3N4/BiOCl. This work could provide insights into the important role of oxygen vacancies in boosting the reduction activity of CO2 for the heterojunctions and provide a facile route for designing highly efficient 2D heterostructures in the field of photocatalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
1秒前
OMG应助自由的果汁采纳,获得10
2秒前
2秒前
田様应助ccfff采纳,获得10
3秒前
3秒前
3秒前
3秒前
ZZ完成签到,获得积分10
4秒前
4秒前
4秒前
CaoYi发布了新的文献求助10
4秒前
5秒前
典雅的问玉完成签到,获得积分10
5秒前
领导范儿应助笨笨梦松采纳,获得10
6秒前
英俊的铭应助笨笨梦松采纳,获得10
6秒前
7秒前
勇者小超人完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
伯赏泽洋发布了新的文献求助10
9秒前
lsl发布了新的文献求助10
10秒前
er发布了新的文献求助10
10秒前
ali完成签到,获得积分10
10秒前
上官若男应助魁梧的外套采纳,获得10
10秒前
小白完成签到,获得积分10
10秒前
neo完成签到,获得积分10
10秒前
11秒前
鱼鱼鱼完成签到,获得积分10
11秒前
跳跳糖发布了新的文献求助20
12秒前
Akim应助傻傻的从梦采纳,获得30
12秒前
12秒前
changaipei完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
斯文败类应助小黄采纳,获得10
13秒前
shutiaodawang完成签到,获得积分10
13秒前
乐观小蕊完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486934
求助须知:如何正确求助?哪些是违规求助? 4586475
关于积分的说明 14409407
捐赠科研通 4517101
什么是DOI,文献DOI怎么找? 2475153
邀请新用户注册赠送积分活动 1460951
关于科研通互助平台的介绍 1433992