亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Precise laminae segmentation based on neural network for robot-assisted decompressive laminectomy

计算机科学 分割 人工智能 机器人 人工神经网络
作者
Qian Li,Zhijiang Du,Hongjian Yu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:209: 106333-106333 被引量:9
标识
DOI:10.1016/j.cmpb.2021.106333
摘要

• A two-stage neural network SegRe-Net is proposed to segment laminae precisely from CT images. • A training strategy is introduced to train the two-stage model effectively and efficiently. • A localizing path is attached to the first stage of the SegRe-Net, and a multi-Gaussian mixture probability map is learned to predict the laminar centers. • The proposed architecture was evaluated on 3 public available datasets with 10-fold cross-validation. An average Dice value of 96.38%, an average absolute symmetric surface distance of 0.097 mm was achieved. Background and Objective: The decompressive laminectomy is one of the most common operations to treat lumbar spinal stenosis by removing the laminae above the spinal nerve. Recently, an increasing number of robots are deployed during the surgical process to reduce the burden on surgeons and to reduce complications. However, for the robot-assisted decompressive laminectomy, an accurate 3D model of laminae from a CT image is highly desired. The purpose of this paper is to precisely segment the laminae with fewer calculations. Methods: We propose a two-stage neural network SegRe-Net. In the first stage, the entire intraoperative CT image is inputted to acquire the coarse segmentation of vertebrae with low resolution and the probability map of the laminar centers. The second stage is trained to refine the segmentation of laminae. Results: Three public available datasets were used to train and validate the models. The experimental results demonstrated the effectiveness of the proposed network on laminar segmentation with an average Dice coefficient of 96.38% and an average symmetric surface distance of 0.097 mm. Conclusion: The proposed two-stage network can achieve better results than those baseline models in the laminae segmentation task with less calculation amount and learnable parameters. Our methods improve the accuracy of laminar models and reduce the image processing time. It can be used to provide a more precise planning trajectory and may promote the clinical application for the robot-assisted decompression laminectomy surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
糖伯虎完成签到 ,获得积分10
3秒前
zdz完成签到,获得积分20
4秒前
7秒前
zdz发布了新的文献求助10
7秒前
李洁发布了新的文献求助10
8秒前
9秒前
可爱亦双发布了新的文献求助10
13秒前
小姚姚完成签到,获得积分10
14秒前
16秒前
AJ完成签到 ,获得积分10
18秒前
mmyhn完成签到,获得积分10
21秒前
朱文韬完成签到,获得积分10
21秒前
凶狠的寄风完成签到 ,获得积分10
21秒前
zmx完成签到 ,获得积分10
23秒前
头孢西丁完成签到 ,获得积分10
23秒前
科研通AI5应助rainning661采纳,获得10
24秒前
Kirito给孤独的觅山的求助进行了留言
27秒前
32秒前
38秒前
Rita应助Fran07采纳,获得10
40秒前
rainning661发布了新的文献求助10
44秒前
酷波er应助酷炫半蕾采纳,获得10
47秒前
Joseph_sss完成签到 ,获得积分10
54秒前
打打应助科研通管家采纳,获得10
1分钟前
Dritsw应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
ranj完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助100
1分钟前
橘橘橘子皮完成签到 ,获得积分10
1分钟前
崔洪瑞完成签到,获得积分10
1分钟前
上官若男应助不辣的皮特采纳,获得10
1分钟前
烟花应助rainning661采纳,获得10
1分钟前
李洁完成签到,获得积分10
1分钟前
赝品也烂漫完成签到,获得积分10
1分钟前
1分钟前
机电牛马发布了新的文献求助10
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Immigrant Incorporation in East Asian Democracies 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3972690
求助须知:如何正确求助?哪些是违规求助? 3517023
关于积分的说明 11186027
捐赠科研通 3252466
什么是DOI,文献DOI怎么找? 1796477
邀请新用户注册赠送积分活动 876435
科研通“疑难数据库(出版商)”最低求助积分说明 805629