Data complexity of daily natural gas consumption: Measurement and impact on forecasting performance

计量经济学 消费(社会学) 计算机科学 气体消耗 天然气 环境科学 经济 工程类 环境经济学 社会学 社会科学 废物管理
作者
Nan Wei,Lihua Yin,Chao Li,Jinyuan Liu,Changjun Li,Yuanyuan Huang,Fanhua Zeng
出处
期刊:Energy [Elsevier BV]
卷期号:238: 122090-122090 被引量:20
标识
DOI:10.1016/j.energy.2021.122090
摘要

Data complexity has a great impact on daily natural gas consumption forecasting. However, due to the existence of irregular data, complex periodic change, and volatility data, the conventional methods, such as Lyapunov exponent and sample entropy, are failed to assess the complexity of the consumption data. Thus, this paper proposes a hybrid method of complexity measure, named CMLS. The novel method combined correlation coefficient analysis, missing data detect, Lyapunov exponent, and skewness analysis. Compared with Lyapunov exponent and sample entropy, CMLS is more stable and insensitive to the length of data in complexity measures. Additionally, for revealing the relationship between data complexity and forecasting performance, we design three case studies including 56 sets of daily natural gas consumption, and forecast with three advanced models. The results show that the forecasting performance various a lot in different complexity level. Particularly in very hard level, the daily natural gas consumption data is very hard to be forecasted and the R2 of forecasts are all negative. This paper serves as an initial study seeks to reveal the impact of data complexity on forecasting performance. The findings can help forecasters to evaluate the performance and difficulty of natural gas consumption forecasting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cc完成签到,获得积分10
刚刚
拿捏陕科大完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
科研通AI5应助zmx123123采纳,获得10
2秒前
蝉时雨完成签到,获得积分10
2秒前
登登完成签到,获得积分10
2秒前
小居很哇塞完成签到,获得积分10
2秒前
liyun驳回了852应助
3秒前
4秒前
4秒前
GGY完成签到,获得积分10
4秒前
自信的忆文完成签到,获得积分10
4秒前
科研通AI5应助Bruce Lin采纳,获得30
4秒前
yoyofun完成签到,获得积分10
5秒前
5秒前
Gakay完成签到,获得积分10
5秒前
huhuhu完成签到 ,获得积分10
6秒前
东北饿霸完成签到,获得积分10
6秒前
33发布了新的文献求助10
7秒前
7秒前
谷雨茶完成签到,获得积分10
7秒前
只A不B应助要减肥的chao采纳,获得10
8秒前
GGY发布了新的文献求助10
8秒前
messyknots完成签到,获得积分10
8秒前
凡凡完成签到,获得积分10
8秒前
9秒前
幸运的科研小狗完成签到,获得积分10
9秒前
kingwill应助77采纳,获得20
10秒前
帅过彭于晏完成签到,获得积分10
10秒前
jxlu发布了新的文献求助30
10秒前
11秒前
CHB只争朝夕完成签到 ,获得积分10
12秒前
好旺发布了新的文献求助10
12秒前
诚心的傲芙完成签到,获得积分10
12秒前
谨慎的豆芽完成签到,获得积分10
12秒前
自由的中蓝完成签到 ,获得积分10
13秒前
13秒前
拉长的曼雁完成签到,获得积分10
13秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808209
求助须知:如何正确求助?哪些是违规求助? 3352922
关于积分的说明 10361718
捐赠科研通 3068974
什么是DOI,文献DOI怎么找? 1685347
邀请新用户注册赠送积分活动 810433
科研通“疑难数据库(出版商)”最低求助积分说明 766150