亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A four-terminal-architecture cloud-edge-based digital twin system for thermal error control of key machining equipment in production lines

机械加工 计算机科学 钥匙(锁) GSM演进的增强数据速率 生产线 体积热力学 数控 实时计算 工程类 机械工程 人工智能 计算机安全 量子力学 物理
作者
Jialan Liu,Chi Ma,Hongquan Gui,Shilong Wang
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:166: 108488-108488 被引量:31
标识
DOI:10.1016/j.ymssp.2021.108488
摘要

Production lines are important for the high-accuracy and efficient machining of parts. The thermal error of key machining equipment in production lines has a significant effect on the geometric accuracy of machined parts. To improve the geometric accuracy of machined parts, the thermal error of key machining equipment in a production line should be controlled. Then the collection, storage, analysis, and calculation of the large-volume manufacturing data are essential. But the processing involving the large-volume manufacturing data is time-consuming and challenging, which leads to low executing efficiency. To solve the problem that the system is inefficient in the processing of the large-volume manufacturing data, a four-terminal-architecture cloud-edge-based digital twin system (CEDTS) is proposed with a reasonable functional division of four terminals, and thus the executing efficiency of CEDTS is expedited. Then the error mechanism is studied to prove the long-term memorizing behavior, and an improved seagull optimization algorithm (ISOA) is proposed based on the chaos thought to optimize the weights, thresholds, and the number of iterations of an improved long short term memory (ILSTM) network with the attention mechanism. The ISOA-ILSTM error model is embedded into the intelligent decision-making terminal of CEDTS to predict the thermal error. Moreover, a comprehensive machining error model is proposed and embedded into the intelligent decision-making terminal of CEDTS to control the thermal error. Finally, the effectiveness of CEDTS is verified on a production line. The results show that the reduction of the large-volume manufacturing data for the collection, storage, analysis, and calculation is significant. With the implementation of CEDTS, the fluctuation range of geometric errors of machined parts is reduced significantly. The executing time is reduced by more than half by CEDTS with the GPU acceleration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸿儒发布了新的文献求助10
1秒前
2秒前
2秒前
ju123完成签到,获得积分10
3秒前
Zdu发布了新的文献求助10
4秒前
类类完成签到,获得积分10
4秒前
英俊的铭应助HHHM采纳,获得10
5秒前
昔年发布了新的文献求助10
8秒前
科研通AI5应助鸿儒采纳,获得10
12秒前
cx完成签到 ,获得积分10
13秒前
昔年完成签到,获得积分10
17秒前
20秒前
D1504009654发布了新的文献求助10
21秒前
5yy发布了新的文献求助10
26秒前
mostspecial完成签到,获得积分10
32秒前
32秒前
科研通AI5应助来碗豆腐采纳,获得10
37秒前
伶俐的高烽完成签到 ,获得积分10
40秒前
5yy完成签到,获得积分20
42秒前
姚美阁完成签到 ,获得积分10
44秒前
44秒前
科目三应助mmyhn采纳,获得10
45秒前
48秒前
49秒前
49秒前
iorpi完成签到,获得积分10
51秒前
愉快的Jerry完成签到,获得积分10
53秒前
来碗豆腐发布了新的文献求助10
55秒前
123456发布了新的文献求助10
55秒前
55秒前
58秒前
李爱国应助研发小学生采纳,获得10
1分钟前
1分钟前
酷波er应助cc采纳,获得10
1分钟前
善学以致用应助123456采纳,获得10
1分钟前
1分钟前
HHHM发布了新的文献求助10
1分钟前
HHHM完成签到,获得积分10
1分钟前
xdmhv完成签到 ,获得积分10
1分钟前
DD立芬完成签到 ,获得积分10
1分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs to Molecular Surgery 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
How to Price: A Guide to Pricing Techniques and Yield Management 200
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833674
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492072
捐赠科研通 3095700
什么是DOI,文献DOI怎么找? 1704647
邀请新用户注册赠送积分活动 820054
科研通“疑难数据库(出版商)”最低求助积分说明 771792