亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Apple Detection Method Based on Des-YOLO v4 Algorithm for Harvesting Robots in Complex Environment

计算机科学 人工智能 算法 一般化 机器人 集合(抽象数据类型) 果园 数学 数学分析 程序设计语言 园艺 生物
作者
Wei Chen,Jingfeng Zhang,Guo Bi-yu,Qingyu Wei,Zhiyu Zhu
出处
期刊:Mathematical Problems in Engineering [Hindawi Publishing Corporation]
卷期号:2021: 1-12 被引量:45
标识
DOI:10.1155/2021/7351470
摘要

Real-time detection of apples in natural environment is a necessary condition for robots to pick apples automatically, and it is also a key technique for orchard yield prediction and fine management. To make the harvesting robots detect apples quickly and accurately in complex environment, a Des-YOLO v4 algorithm and a detection method of apples are proposed. Compared with the current mainstream detection algorithms, YOLO v4 has better detection performance. However, the complex network structure of YOLO v4 will reduce the picking efficiency of the robot. Therefore, a Des-YOLO structure is proposed, which reduces network parameters and improves the detection speed of the algorithm. In the training phase, the imbalance of positive and negative samples will cause false detection of apples. To solve the above problem, a class loss function based on AP-Loss (Average Precision Loss) is proposed to improve the accuracy of apple recognition. Traditional YOLO algorithm uses NMS (Nonmaximum Suppression) method to filter the prediction boxes, but NMS cannot detect the adjacent apples when they overlap each other. Therefore, Soft-NMS is used instead of NMS to solve the problem of missing detection, so as to improve the generalization of the algorithm. The proposed algorithm is tested on the self-made apple image data set. The results show that Des-YOLO v4 network has ideal features with a mAP (mean Average Precision) of apple detection of 97.13%, a recall rate of 90%, and a detection speed of 51 f/s. Compared with traditional network models such as YOLO v4 and Faster R-CNN, the Des-YOLO v4 can meet the accuracy and speed requirements of apple detection at the same time. Finally, the self-designed apple-harvesting robot is used to carry out the harvesting experiment. The experiment shows that the harvesting time is 8.7 seconds and the successful harvesting rate of the robot is 92.9%. Therefore, the proposed apple detection method has the advantages of higher recognition accuracy and faster recognition speed. It can provide new solutions for apple-harvesting robots and new ideas for smart agriculture.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助石榴石采纳,获得10
11秒前
20秒前
石榴石发布了新的文献求助10
25秒前
石榴石完成签到,获得积分10
32秒前
1分钟前
1分钟前
1分钟前
1分钟前
Yanjun发布了新的文献求助10
1分钟前
Yanjun完成签到,获得积分10
2分钟前
nicolaslcq完成签到,获得积分10
2分钟前
wodetaiyangLLL完成签到 ,获得积分10
3分钟前
大模型应助科研通管家采纳,获得10
3分钟前
4分钟前
real发布了新的文献求助10
4分钟前
传奇3应助real采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
毛毛完成签到,获得积分10
5分钟前
6分钟前
Carsen完成签到,获得积分10
6分钟前
7分钟前
木头完成签到,获得积分10
7分钟前
KKandace完成签到,获得积分10
7分钟前
scm完成签到,获得积分10
8分钟前
8分钟前
iShine完成签到 ,获得积分10
8分钟前
real发布了新的文献求助10
8分钟前
NexusExplorer应助real采纳,获得10
8分钟前
光合作用完成签到,获得积分10
8分钟前
欢欢完成签到,获得积分10
9分钟前
MchemG应助科研通管家采纳,获得20
9分钟前
在水一方应助科研通管家采纳,获得10
9分钟前
牟白容完成签到,获得积分20
9分钟前
10分钟前
小小怪发布了新的文献求助10
10分钟前
11分钟前
zys发布了新的文献求助10
11分钟前
11分钟前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819947
求助须知:如何正确求助?哪些是违规求助? 3362824
关于积分的说明 10418846
捐赠科研通 3081184
什么是DOI,文献DOI怎么找? 1694991
邀请新用户注册赠送积分活动 814791
科研通“疑难数据库(出版商)”最低求助积分说明 768522