Detecting Compressed Deepfake Videos in Social Networks Using Frame-Temporality Two-Stream Convolutional Network

计算机科学 暂时性 帧(网络) 压缩传感 数据压缩 压缩(物理) 人工智能 一致性(知识库) 计算机视觉 数据挖掘 模式识别(心理学) 电信 认识论 哲学 复合材料 材料科学
作者
Juan Hu,Xin Liao,Wei Wang,Zheng Qin
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:32 (3): 1089-1102 被引量:143
标识
DOI:10.1109/tcsvt.2021.3074259
摘要

The development of technologies that can generate Deepfake videos is expanding rapidly. These videos are easily synthesized without leaving obvious traces of manipulation. Though forensically detection in high-definition video datasets has achieved remarkable results, the forensics of compressed videos is worth further exploring. In fact, compressed videos are common in social networks, such as videos from Instagram, Wechat, and Tiktok. Therefore, how to identify compressed Deepfake videos becomes a fundamental issue. In this paper, we propose a two-stream method by analyzing the frame-level and temporality-level of compressed Deepfake videos. Since the video compression brings lots of redundant information to frames, the proposed frame-level stream gradually prunes the network to prevent the model from fitting the compression noise. Aiming at the problem that the temporal consistency in Deepfake videos might be ignored, we apply a temporality-level stream to extract temporal correlation features. When combined with scores from the two streams, our proposed method performs better than the state-of-the-art methods in compressed Deepfake videos detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yuyu应助大盆采纳,获得10
2秒前
Rain完成签到,获得积分10
3秒前
无花果应助pan采纳,获得10
5秒前
土豪的鸿煊完成签到,获得积分10
6秒前
落后的听双完成签到 ,获得积分10
6秒前
6秒前
北风完成签到 ,获得积分10
7秒前
9秒前
风趣的老太完成签到,获得积分10
9秒前
9秒前
10秒前
小方发布了新的文献求助10
11秒前
无花果应助pan采纳,获得10
14秒前
14秒前
TIWOSS发布了新的文献求助10
14秒前
XieQinxie发布了新的文献求助10
15秒前
huanhuan发布了新的文献求助10
15秒前
SciGPT应助张卓采纳,获得10
15秒前
热心市民应助科研通管家采纳,获得10
17秒前
上官若男应助科研通管家采纳,获得10
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得20
17秒前
17秒前
sutharsons应助科研通管家采纳,获得100
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
科目三应助科研通管家采纳,获得10
18秒前
18秒前
小马甲应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
18秒前
ju99发布了新的文献求助10
21秒前
嘿哈嘿完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
嘿哈嘿发布了新的文献求助10
24秒前
西瓜完成签到,获得积分10
27秒前
小方发布了新的文献求助10
27秒前
Lucas应助陌尘采纳,获得10
27秒前
橙子发布了新的文献求助10
28秒前
田様应助露似珍珠月似弓采纳,获得10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800297
求助须知:如何正确求助?哪些是违规求助? 3345583
关于积分的说明 10325859
捐赠科研通 3062057
什么是DOI,文献DOI怎么找? 1680741
邀请新用户注册赠送积分活动 807201
科研通“疑难数据库(出版商)”最低求助积分说明 763557