数学
马尔可夫链
遍历性
遍历理论
收敛速度
鞅(概率论)
有界函数
应用数学
统计
纯数学
数学分析
电气工程
频道(广播)
工程类
作者
Quentin Duchemin,Yohann de Castro,Claire Lacour
出处
期刊:Bernoulli
[Chapman and Hall London]
日期:2023-02-20
卷期号:29 (2)
被引量:3
摘要
We prove a new concentration inequality for U-statistics of order two for uniformly ergodic Markov chains. Working with bounded and π-canonical kernels, we show that we can recover the convergence rate of Arcones and Giné who proved a concentration result for U-statistics of independent random variables and canonical kernels. Our result allows for a dependence of the kernels hi,j with the indexes in the sums, which prevents the use of standard blocking tools. Our proof relies on an inductive analysis where we use martingale techniques, uniform ergodicity, Nummelin splitting and Bernstein’s type inequality. Assuming further that the Markov chain starts from its invariant distribution, we prove a Bernstein-type concentration inequality that provides sharper convergence rate for small variance terms.
科研通智能强力驱动
Strongly Powered by AbleSci AI