Multi-modal Knowledge-aware Reinforcement Learning Network for Explainable Recommendation

计算机科学 强化学习 可解释性 情态动词 推论 图形 人工智能 路径(计算) 光学(聚焦) 动作(物理) 特征学习 机器学习 理论计算机科学 光学 物理 化学 高分子化学 程序设计语言 量子力学
作者
Shaohua Tao,Runhe Qiu,Yuan Ping,Hui Ma
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:227: 107217-107217 被引量:46
标识
DOI:10.1016/j.knosys.2021.107217
摘要

Knowledge graphs (KGs) can provide rich, structured information for recommendation systems as well as increase accuracy and perform explicit reasoning. Deep reinforcement learning (RL) has also sparked great interest in personalized recommendations. The combination of the two holds promise in carrying out interpretable causal inference procedures and improving the performance of graph-structured recommendation. However, most KG-based recommendation focus on rich semantic relationships between entities in a heterogeneous knowledge graph, and thus fail to fully make use of the image information corresponding to an entity. In order to address these issues, we proposed a novel Multi-modal Knowledge-aware Reinforcement Learning Network (MKRLN), which couples recommendation and interpretability by providing actual paths in multi-modal KG (MKG). The MKRLN can generate path representation by composing the structural and visual information of entities, and infers the underlying rational of agent-MKG interactions by leveraging the sequential dependencies within a path from the MKG. In addition, as KGs have too many attributes and entities, their combination with RL leads to too many action spaces and states in the reinforcement learning space, which complicates the search of action spaces. Furthermore, in order to solve this problem, we proposed a new hierarchical attention-path, which makes users focus their attention on the items they are interested in. This reduces the relations and entities in the KGs, which in turn reduces the action space and state in RL, shortens the path to the target entity, and improves the accuracy of recommendation. Our model has explicit explanation ability in knowledge and images. Finally, we extensively evaluated our model on several large-scale real-world benchmark datasets, and it yielded favorable results compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sugar发布了新的文献求助10
1秒前
3333发布了新的文献求助10
1秒前
1秒前
bkagyin应助zz采纳,获得10
1秒前
4秒前
科研通AI2S应助rita4616采纳,获得10
5秒前
5秒前
6秒前
6秒前
小熊猫发布了新的文献求助10
6秒前
sunguoyi完成签到,获得积分10
7秒前
ei123应助千山孤风采纳,获得30
8秒前
我姓孙完成签到,获得积分20
8秒前
称心问柳发布了新的文献求助10
9秒前
我姓孙发布了新的文献求助10
11秒前
小星星发布了新的文献求助10
12秒前
13秒前
稳重无招完成签到,获得积分20
13秒前
ssss1003应助eiii采纳,获得10
13秒前
15秒前
科研通AI2S应助sugar采纳,获得10
16秒前
遮沙避风了完成签到,获得积分10
16秒前
轻松水瑶应助真实的火车采纳,获得10
16秒前
清风拂明月应助自由秋荷采纳,获得50
17秒前
jjj应助我姓孙采纳,获得20
18秒前
18秒前
19秒前
稳重无招发布了新的文献求助20
19秒前
19秒前
flj7038完成签到,获得积分0
20秒前
小小完成签到,获得积分10
21秒前
NING发布了新的文献求助10
22秒前
22秒前
艾培怀发布了新的文献求助10
25秒前
思源应助淡然的铭采纳,获得10
25秒前
25秒前
123456发布了新的文献求助10
27秒前
ttttttttttg完成签到,获得积分10
27秒前
Ava应助xl采纳,获得10
27秒前
陌上人发布了新的文献求助10
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
Commercial production of mevalonolactone by fermentation and the application to skin cosmetics with anti-aging effect 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3930282
求助须知:如何正确求助?哪些是违规求助? 3475236
关于积分的说明 10985824
捐赠科研通 3205267
什么是DOI,文献DOI怎么找? 1771402
邀请新用户注册赠送积分活动 858902
科研通“疑难数据库(出版商)”最低求助积分说明 796873