Machine-Learning-Based Microwave Sensing: A Case Study for the Food Industry

现场可编程门阵列 计算机科学 机器学习 微波食品加热 人工智能 软件部署 深度学习 探测器 实时计算 嵌入式系统 电信 软件工程
作者
M. Ricci,Bernardita Štitić,Luca Urbinati,Giuseppe Di Guglielmo,J. A. Tobón Vasquez,Luca P. Carloni,Francesca Vipiana,Mario R. Casu
出处
期刊:IEEE Journal on Emerging and Selected Topics in Circuits and Systems [Institute of Electrical and Electronics Engineers]
卷期号:11 (3): 503-514 被引量:37
标识
DOI:10.1109/jetcas.2021.3097699
摘要

Despite the meticulous attention of food industries to prevent hazards in packaged goods, some contaminants may still elude the controls. Indeed, standard methods, like X-rays, metal detectors and near-infrared imaging, cannot detect low-density materials. Microwave sensing is an alternative method that, combined with machine learning classifiers, can tackle these deficiencies. In this paper we present a design methodology applied to a case study in the food sector. Specifically, we offer a complete flow from microwave dataset acquisition to deployment of the classifiers on real-time hardware and we show the effectiveness of this method in terms of detection accuracy. In the case study, we apply the machine-learning based microwave sensing approach to the case of food jars flowing at high speed on a conveyor belt. First, we collected a dataset from hazelnut-cocoa spread jars which were uncontaminated or contaminated with various intrusions, including low-density plastics. Then, we performed a design space exploration to choose the best MLPs as binary classifiers, which resulted to be exceptionally accurate. Finally, we selected the two most light-weight models for implementation on both an ARM-based CPU and an FPGA SoC, to cover a wide range of possible latency requirements, from loose to strict, to detect contaminants in real-time. The proposed design flow facilitates the design of the FPGA accelerator that might be required to meet the timing requirements by using a high-level approach, which might be suited for the microwave domain experts without specific digital hardware skills.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
amber完成签到 ,获得积分10
1秒前
1秒前
MchemG应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得30
1秒前
jinshiyu58发布了新的文献求助10
1秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
今后应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
上官若男应助科研通管家采纳,获得10
2秒前
爆米花应助科研通管家采纳,获得10
2秒前
wanci应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
田様应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
过氧化氢完成签到,获得积分10
3秒前
Slhy完成签到 ,获得积分10
4秒前
猪猪hero应助三新荞采纳,获得10
6秒前
SYLH应助Wenson采纳,获得50
6秒前
慕青应助枫泾采纳,获得10
7秒前
8秒前
诚心冬亦发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
10秒前
欣喜宛亦完成签到 ,获得积分10
12秒前
12秒前
他也蓝发布了新的文献求助10
13秒前
芋泥面包发布了新的文献求助10
13秒前
liyb完成签到,获得积分10
14秒前
绵羊座鸭梨完成签到 ,获得积分10
14秒前
orixero应助drxiao采纳,获得30
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976267
求助须知:如何正确求助?哪些是违规求助? 3520472
关于积分的说明 11203425
捐赠科研通 3257089
什么是DOI,文献DOI怎么找? 1798589
邀请新用户注册赠送积分活动 877785
科研通“疑难数据库(出版商)”最低求助积分说明 806523