Antimalarial Drug Predictions Using Molecular Descriptors and Machine Learning against Plasmodium Falciparum

青蒿素 恶性疟原虫 疟疾 人工智能 特征选择 甲氟喹 机器学习 特征(语言学) 计算机科学 氯喹 人工神经网络 分子描述符 蒿甲醚 生物 数量结构-活动关系 免疫学 哲学 语言学
作者
Medard Edmund Mswahili,Gati Lother Martin,Jiyoung Woo,Guang J. Choi,Young-Seob Jeong
出处
期刊:Biomolecules [Multidisciplinary Digital Publishing Institute]
卷期号:11 (12): 1750-1750 被引量:3
标识
DOI:10.3390/biom11121750
摘要

Malaria remains by far one of the most threatening and dangerous illnesses caused by the plasmodium falciparum parasite. Chloroquine (CQ) and first-line artemisinin-based combination treatment (ACT) have long been the drug of choice for the treatment and controlling of malaria; however, the emergence of CQ-resistant and artemisinin resistance parasites is now present in most areas where malaria is endemic. In this work, we developed five machine learning models to predict antimalarial bioactivities of a drug against plasmodium falciparum from the features (i.e., molecular descriptors values) obtained from PaDEL software from SMILES of compounds and compare the machine learning models by experiments with our collected data of 4794 instances. As a consequence, we found that three models amongst the five, namely artificial neural network (ANN), extreme gradient boost (XGB), and random forest (RF), outperform the others in terms of accuracy while observing that, using roughly a quarter of the promising descriptors picked by the feature selection algorithm, the five models achieved equivalent and comparable performance. Nevertheless, the contribution of all molecular descriptors in the models was investigated through the comparison of their rank values by the feature selection algorithm and found that the most potent and relevant descriptors which come from the 'Autocorrelation' module contributed more while the 'Atom type electrotopological state' contributed the least to the model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
慕容听白完成签到,获得积分10
2秒前
2秒前
SSY完成签到,获得积分10
3秒前
4秒前
星辰大海应助JJbond采纳,获得10
6秒前
科研小白发布了新的文献求助10
7秒前
姚小包子发布了新的文献求助10
7秒前
榴莲受众发布了新的文献求助10
8秒前
sci完成签到,获得积分20
8秒前
乐观静蕾发布了新的文献求助10
9秒前
9秒前
南屿汐月完成签到 ,获得积分10
11秒前
12秒前
gaga发布了新的文献求助10
13秒前
叫滚滚发布了新的文献求助10
15秒前
情怀应助科研小白采纳,获得10
15秒前
16秒前
17秒前
共享精神应助LeafLight采纳,获得10
17秒前
18秒前
wei完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
叫滚滚完成签到,获得积分10
21秒前
善良乐松完成签到,获得积分10
21秒前
JJbond发布了新的文献求助10
21秒前
干净语兰发布了新的文献求助10
22秒前
felicity完成签到 ,获得积分10
22秒前
我是老大应助maomao采纳,获得10
23秒前
24秒前
DaLu发布了新的文献求助10
24秒前
田様应助落寞凌柏采纳,获得10
25秒前
流星噬月发布了新的文献求助10
26秒前
怿愀发布了新的文献求助10
26秒前
Liou应助kun采纳,获得10
28秒前
热情的夏发布了新的文献求助10
28秒前
wei发布了新的文献求助10
29秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810579
求助须知:如何正确求助?哪些是违规求助? 3355069
关于积分的说明 10374243
捐赠科研通 3071730
什么是DOI,文献DOI怎么找? 1687057
邀请新用户注册赠送积分活动 811396
科研通“疑难数据库(出版商)”最低求助积分说明 766644