EEG microstate features for schizophrenia classification

地方政府 脑电图 特征(语言学) 人工智能 精神分裂症(面向对象编程) 模式识别(心理学) 神经科学 计算机科学 心理学 精神科 语言学 哲学
作者
Kyungwon Kim,Nguyen Thanh Duc,Minsung Choi,Boreom Lee
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:16 (5): e0251842-e0251842 被引量:71
标识
DOI:10.1371/journal.pone.0251842
摘要

Electroencephalography (EEG) microstate analysis is a method wherein spontaneous EEG activity is segmented at sub-second levels to analyze quasi-stable states. In particular, four archetype microstates and their features are known to reflect changes in brain state in neuropsychiatric diseases. However, previous studies have only reported differences in each microstate feature and have not determined whether microstate features are suitable for schizophrenia classification. Therefore, it is necessary to validate microstate features for schizophrenia classification. Nineteen microstate features, including duration, occurrence, and coverage as well as thirty-one conventional EEG features, including statistical, frequency, and temporal characteristics were obtained from resting-state EEG recordings of 14 patients diagnosed with schizophrenia and from 14 healthy (control) subjects. Machine-learning based multivariate analysis was used to evaluate classification performance. EEG recordings of patients and controls showed different microstate features. More importantly, when differentiating among patients and controls, EEG microstate features outperformed conventional EEG ones. The performance of the microstate features exceeded that of conventional EEG, even after optimization using recursive feature elimination. EEG microstate features applied with conventional EEG features also showed better classification performance than conventional EEG features alone. The current study is the first to validate the use of microstate features to discriminate schizophrenia, suggesting that EEG microstate features are useful for schizophrenia classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潇洒的语蝶完成签到 ,获得积分10
1秒前
博士加油完成签到,获得积分10
2秒前
温文尔雅完成签到,获得积分10
2秒前
mingjie完成签到,获得积分10
3秒前
清风完成签到 ,获得积分10
3秒前
烟花应助Migrol采纳,获得10
3秒前
singber完成签到,获得积分10
3秒前
沉默傲芙完成签到,获得积分10
3秒前
AoAoo完成签到,获得积分10
4秒前
yongzaizhuigan完成签到,获得积分0
4秒前
一味愚完成签到,获得积分10
4秒前
pp完成签到,获得积分10
5秒前
gzj完成签到,获得积分10
7秒前
哈哈哈哈怪完成签到,获得积分10
7秒前
cn完成签到 ,获得积分10
7秒前
贾小闲完成签到,获得积分10
7秒前
soong完成签到 ,获得积分10
8秒前
QAQSS完成签到 ,获得积分10
8秒前
蜜蜂威士忌完成签到 ,获得积分10
10秒前
H1lb2rt完成签到 ,获得积分10
10秒前
LGZ完成签到 ,获得积分0
12秒前
母单花完成签到 ,获得积分10
12秒前
12秒前
幸福的手套完成签到 ,获得积分10
13秒前
14秒前
She完成签到,获得积分20
15秒前
ziyue发布了新的文献求助10
15秒前
水博士完成签到,获得积分10
16秒前
芽衣完成签到 ,获得积分10
16秒前
JamesPei应助fishhh采纳,获得10
16秒前
打打应助liuniuniu采纳,获得10
17秒前
喜悦香薇完成签到 ,获得积分10
17秒前
Haonan完成签到,获得积分10
19秒前
laihama完成签到,获得积分10
20秒前
ziyue完成签到,获得积分10
20秒前
pp发布了新的文献求助10
20秒前
win完成签到 ,获得积分10
21秒前
22秒前
冰销雪释完成签到,获得积分10
22秒前
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Friction Capacity of Piles Driven into Clay 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837587
求助须知:如何正确求助?哪些是违规求助? 3379721
关于积分的说明 10510250
捐赠科研通 3099320
什么是DOI,文献DOI怎么找? 1707062
邀请新用户注册赠送积分活动 821413
科研通“疑难数据库(出版商)”最低求助积分说明 772615