Recent Automatic Segmentation Algorithms of MRI Prostate Regions: A Review

计算机科学 分割 人工智能 图像分割 计算机视觉 算法
作者
Zia U. Khan,Norashikin Yahya,Khaled Alsaih,Mohammed Isam Al-Hiyali,Fabrice Mériaudeau
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:9: 97878-97905 被引量:39
标识
DOI:10.1109/access.2021.3090825
摘要

World-wide incidence rate of prostate cancer has progressively increased with time especially with the increased proportion of elderly population. Early detection of prostate cancer when it is confined to the prostate gland has the best chance of successful treatment and increase in surviving rate. Prostate cancer occurrence rate varies over the three prostate regions, peripheral zone (PZ), transitional zone (TZ), and central zone (CZ) and this characteristic is one of the important considerations is development of segmentation algorithm. In fact, the occurrence rate of cancer PZ, TZ and CZ regions is respectively. at 70-80%, 10-20%, 5% or less. In general application of medical imaging, segmentation tasks can be time consuming for the expert to delineate the region of interest, especially when involving large numbers of images. In addition, the manual segmentation is subjective depending on the expert's experience. Hence, the need to develop automatic segmentation algorithms has rapidly increased along with the increased need of diagnostic tools for assisting medical practitioners, especially in the absence of radiologists. The prostate gland segmentation is challenging due to its shape variability in each zone from patient to patient and different tumor levels in each zone. This survey reviewed 22 machine learning and 88 deep learning-based segmentation of prostate MRI papers, including all MRI modalities. The review coverage includes the initial screening and imaging techniques, image pre-processing, segmentation techniques based on machine learning and deep learning techniques. Particular attention is given to different loss functions used for training segmentation based on deep learning techniques. Besides, a summary of publicly available prostate MRI image datasets is also provided. Finally, the future challenges and limitations of current deep learning-based approaches and suggestions of potential future research are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助foxp3采纳,获得10
刚刚
1秒前
Hello应助zyc采纳,获得10
1秒前
1秒前
ardejiang发布了新的文献求助10
2秒前
Sanool完成签到,获得积分10
2秒前
YMUSTC发布了新的文献求助10
2秒前
大个应助momokop采纳,获得10
3秒前
4秒前
MeOH拿桶接发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
Q17完成签到,获得积分10
7秒前
含蓄洋葱完成签到,获得积分10
8秒前
成功发布了新的文献求助10
8秒前
9秒前
任性的傲柏完成签到,获得积分10
9秒前
9秒前
monere发布了新的文献求助10
9秒前
9秒前
10秒前
一个搞不懂晶体学的小牛马完成签到,获得积分10
11秒前
轻松文轩发布了新的文献求助10
11秒前
gaon完成签到,获得积分10
12秒前
吴军霄发布了新的文献求助10
12秒前
虚拟的半梦完成签到,获得积分10
12秒前
13秒前
花痴的寻菱完成签到,获得积分10
13秒前
卑微科研发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
知性的土豆完成签到,获得积分10
14秒前
FJXHXQ发布了新的文献求助10
14秒前
15秒前
17秒前
17秒前
芋丸圆发布了新的文献求助10
19秒前
科研通AI5应助友好凌柏采纳,获得10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787580
求助须知:如何正确求助?哪些是违规求助? 3333171
关于积分的说明 10259745
捐赠科研通 3048682
什么是DOI,文献DOI怎么找? 1673245
邀请新用户注册赠送积分活动 801721
科研通“疑难数据库(出版商)”最低求助积分说明 760338