Establishing a survival prediction model for esophageal squamous cell carcinoma based on CT and histopathological images

医学 H&E染色 数字图像分析 数字化病理学 生存分析 放射科 计算机科学 组织病理学 病理 核医学 染色 内科学 计算机视觉
作者
Jinlong Wang,Lei‐Lei Wu,Yunzhe Zhang,Guowei Ma,Yao Lu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (14): 145015-145015 被引量:9
标识
DOI:10.1088/1361-6560/ac1020
摘要

Currently, the incidence of esophageal squamous cell carcinoma (ESCC) in China is high and its prognosis is poor. To evaluate the prognosis of patients with ESCC, we performed computerized quantitative analyses on diagnostic computed tomography (CT) and digital histopathological slices. A retrospective study was conducted to assess the prognosis of ESCC in 153 patients who underwent esophagectomy, and the cohort was selected based on strict clinical criteria. Each patient had an enhanced CT image, and there were two imaging protocols for CT images of all patients. Each patient in the cohort also had a histopathological tissue slide after hematoxylin-eosin staining. Under an electron microscope, the tissue slide was scanned as an image of large size. We then performed quantitative analyses to identify factors related to the prognosis of ESCC on digital histological images and diagnostic CT images. For CT images, we used the radiomics method. For histological images, we designed a set of quantitative features based on machine learning algorithms, such as K-means and principal component analysis. These features describe the patterns of different cell types in histopathological images. Subsequently, we used the survival analysis model established using only CT image features as the baseline. We also compared multiple machine learning models and adopted a five-fold cross-validation method to establish a robust survival model. In establishing survival models, we first used CT image features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.624. Then we used histopathlogical features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.664, which was obviously better than CT's. Lastly, we combined CT image features and histopathological image features to establish survival models. The performance was better than that in the models built using only CT image features or histopathological image features, and the C-index from the regularized Cox model on the test set reached 0.694. We also proved the effectiveness of the quantified histopathological image features in terms of prognosis using the log-rank test. Histopathological image features are more relevant to prognosis than features extracted from CT images using radiomics. The results of this study provide clinicians with a reference to improve the survival rate of patients with ESCC after surgery. These results have implications for advancing the process of explaining the poor prognosis of esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wjn完成签到,获得积分10
3秒前
七七完成签到,获得积分10
4秒前
哈哈哈eric应助流星采纳,获得10
4秒前
快乐丸子完成签到,获得积分10
5秒前
脑洞疼应助馨lover采纳,获得10
5秒前
7秒前
jojo完成签到,获得积分10
8秒前
fanny完成签到 ,获得积分10
8秒前
11秒前
馨lover完成签到,获得积分10
11秒前
wyx完成签到 ,获得积分10
12秒前
彭于晏应助A溶大美噶采纳,获得10
12秒前
12秒前
jojo发布了新的文献求助10
14秒前
SAVP发布了新的文献求助10
14秒前
Ampace小老弟完成签到 ,获得积分10
15秒前
17秒前
李健的粉丝团团长应助lll采纳,获得10
17秒前
18秒前
19秒前
21秒前
香蕉觅云应助追寻半仙采纳,获得10
23秒前
24秒前
24秒前
Zhang发布了新的文献求助10
24秒前
24秒前
脑洞疼应助elysia采纳,获得10
25秒前
cn完成签到 ,获得积分10
26秒前
千江有水发布了新的文献求助10
26秒前
27秒前
SAVP完成签到,获得积分10
28秒前
科研通AI2S应助那你采纳,获得10
29秒前
放长线钓大YU应助虚影采纳,获得10
31秒前
lll发布了新的文献求助10
33秒前
肉哥发布了新的文献求助50
34秒前
36秒前
39秒前
shannon发布了新的文献求助10
39秒前
哈哈发布了新的文献求助10
40秒前
丘比特应助无心的三问采纳,获得10
40秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906101
求助须知:如何正确求助?哪些是违规求助? 3451681
关于积分的说明 10865958
捐赠科研通 3176999
什么是DOI,文献DOI怎么找? 1755205
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791207