Establishing a survival prediction model for esophageal squamous cell carcinoma based on CT and histopathological images

医学 H&E染色 数字图像分析 数字化病理学 生存分析 放射科 计算机科学 组织病理学 病理 核医学 染色 内科学 计算机视觉
作者
Jinlong Wang,Lei‐Lei Wu,Yunzhe Zhang,Guowei Ma,Yao Lu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:66 (14): 145015-145015 被引量:9
标识
DOI:10.1088/1361-6560/ac1020
摘要

Currently, the incidence of esophageal squamous cell carcinoma (ESCC) in China is high and its prognosis is poor. To evaluate the prognosis of patients with ESCC, we performed computerized quantitative analyses on diagnostic computed tomography (CT) and digital histopathological slices. A retrospective study was conducted to assess the prognosis of ESCC in 153 patients who underwent esophagectomy, and the cohort was selected based on strict clinical criteria. Each patient had an enhanced CT image, and there were two imaging protocols for CT images of all patients. Each patient in the cohort also had a histopathological tissue slide after hematoxylin-eosin staining. Under an electron microscope, the tissue slide was scanned as an image of large size. We then performed quantitative analyses to identify factors related to the prognosis of ESCC on digital histological images and diagnostic CT images. For CT images, we used the radiomics method. For histological images, we designed a set of quantitative features based on machine learning algorithms, such as K-means and principal component analysis. These features describe the patterns of different cell types in histopathological images. Subsequently, we used the survival analysis model established using only CT image features as the baseline. We also compared multiple machine learning models and adopted a five-fold cross-validation method to establish a robust survival model. In establishing survival models, we first used CT image features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.624. Then we used histopathlogical features to establish survival models, and the C-index from the Weibull Cox model on the test set reached 0.664, which was obviously better than CT's. Lastly, we combined CT image features and histopathological image features to establish survival models. The performance was better than that in the models built using only CT image features or histopathological image features, and the C-index from the regularized Cox model on the test set reached 0.694. We also proved the effectiveness of the quantified histopathological image features in terms of prognosis using the log-rank test. Histopathological image features are more relevant to prognosis than features extracted from CT images using radiomics. The results of this study provide clinicians with a reference to improve the survival rate of patients with ESCC after surgery. These results have implications for advancing the process of explaining the poor prognosis of esophageal cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dean应助呵呵哒采纳,获得70
1秒前
开放夏旋发布了新的文献求助10
2秒前
liagse完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
yanlulu完成签到 ,获得积分10
7秒前
tangz完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
星辰大海应助hypttkx采纳,获得10
11秒前
苻谷丝完成签到,获得积分10
12秒前
taeyeon完成签到,获得积分10
12秒前
大鱼发布了新的文献求助10
12秒前
tangz发布了新的文献求助10
12秒前
Han发布了新的文献求助30
13秒前
13秒前
充电宝应助ccc采纳,获得10
14秒前
科目三应助The采纳,获得10
15秒前
大笨冰发布了新的文献求助10
15秒前
15秒前
16秒前
16秒前
Hopping完成签到 ,获得积分10
16秒前
潜心而学完成签到,获得积分10
17秒前
HaiKing发布了新的文献求助30
17秒前
18秒前
不想干活应助Chrysalism_Saliy采纳,获得10
19秒前
顾矜应助明理的化蛹采纳,获得10
19秒前
卡诺循环完成签到,获得积分10
19秒前
搜集达人应助lmmorz采纳,获得10
19秒前
三分应助靓丽的安筠采纳,获得10
20秒前
刘海洋发布了新的文献求助10
20秒前
lulu发布了新的文献求助10
20秒前
十一发布了新的文献求助10
22秒前
yeah发布了新的文献求助10
22秒前
23秒前
李健的小迷弟应助大鱼采纳,获得10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4525986
求助须知:如何正确求助?哪些是违规求助? 3965954
关于积分的说明 12291499
捐赠科研通 3630428
什么是DOI,文献DOI怎么找? 1997955
邀请新用户注册赠送积分活动 1034310
科研通“疑难数据库(出版商)”最低求助积分说明 923892