Using Word2Vec-LDA-Word Mover Distance for Comparing the Patterns of Information Seeking and Sharing during the COVID-19 Pandemic

大流行 文字2vec 政府(语言学) 社会化媒体 信息共享 计算机科学 微博 社会距离 主题模型 情境伦理学 舆论 数据科学 知识管理 公共关系 2019年冠状病毒病(COVID-19) 业务 政治学 心理学 人工智能 万维网 社会心理学 医学 语言学 哲学 疾病 嵌入 病理 传染病(医学专业) 政治 法学
作者
Wei Wei Chan,Hui Na Chua
标识
DOI:10.1109/i2ct54291.2022.9825122
摘要

During pandemics such as COVID-19, government announcements were sources to convey accurate and relevant information to the public in times of outbreak. Prior studies attempted to explore the public awareness and behavioral changes from various research disciplines in response to the COVID-19 pandemic. Literature has pointed out that the appropriate use of information sources significantly relates to public attitudes in battling the pandemic. Social media has been the widely used medium to express public interests in current events. Literature shows that social media use during a crisis effectively coordinates relevant information from different sources and promotes situational awareness. Therefore, it is crucial to investigate scalable approaches to promptly gather insights into the public's interests and how governments responded to the interests relevant to the COVID-19 pandemic. However, there is little empirical research found that tackles these needs. Therefore, we aim to close the research gap by examining the feasible approaches for (1) identifying if public information-seeking has similar patterns as information-sharing on social media during the COVID-19 pandemic, and (2) comparing the patterns with the government announcements to confirm if the announcements show aligned response to the public information-seeking and sharing during the COVID-19 pandemic. We applied text processing, LDA topic modeling, and Word Mover Distance techniques to realize our aim through a Malaysian case study. Our research work contributes to the application of the LDA-Word2Vec-Word Mover Distance architecture and algorithms that can be used for future investigation and comparison of information seeking and sharing patterns in different research subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
彼其于岸完成签到 ,获得积分10
1秒前
神勇夏寒完成签到,获得积分10
2秒前
BWRESEARCH完成签到,获得积分10
3秒前
崔同学发布了新的文献求助10
4秒前
果实发布了新的文献求助10
4秒前
4秒前
苏凡发布了新的文献求助10
4秒前
N7完成签到,获得积分10
5秒前
5秒前
金闪闪完成签到 ,获得积分10
5秒前
邓佳鑫Alan应助randomnyle采纳,获得10
8秒前
8秒前
qingzhiwu完成签到,获得积分10
10秒前
LZQ发布了新的文献求助30
11秒前
Yasong发布了新的文献求助10
11秒前
鑫鑫发布了新的文献求助10
12秒前
Windsea发布了新的文献求助10
13秒前
绿波电龙完成签到,获得积分10
14秒前
朴素的不乐完成签到 ,获得积分10
15秒前
于世不凡完成签到,获得积分10
15秒前
小一完成签到,获得积分10
16秒前
17秒前
18秒前
香蕉觅云应助派大星采纳,获得30
19秒前
Layace完成签到 ,获得积分10
19秒前
朴素完成签到,获得积分10
20秒前
22秒前
sisi完成签到 ,获得积分10
22秒前
23秒前
lily发布了新的文献求助10
26秒前
27秒前
27秒前
好运来完成签到 ,获得积分10
27秒前
小宇宙发布了新的文献求助10
28秒前
Mario应助Victoria采纳,获得10
31秒前
33秒前
顾矜应助科研通管家采纳,获得10
33秒前
Hello应助科研通管家采纳,获得10
33秒前
ding应助科研通管家采纳,获得10
33秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
The Geography 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3914749
求助须知:如何正确求助?哪些是违规求助? 3460110
关于积分的说明 10909530
捐赠科研通 3186792
什么是DOI,文献DOI怎么找? 1761580
邀请新用户注册赠送积分活动 852212
科研通“疑难数据库(出版商)”最低求助积分说明 793213