Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow Forecasting

计算机科学 图形 变压器 数据挖掘 理论计算机科学 工程类 电气工程 电压
作者
Aosong Feng,Leandros Tassiulas
出处
期刊:Cornell University - arXiv 被引量:5
标识
DOI:10.48550/arxiv.2207.05064
摘要

Traffic flow forecasting on graphs has real-world applications in many fields, such as transportation system and computer networks. Traffic forecasting can be highly challenging due to complex spatial-temporal correlations and non-linear traffic patterns. Existing works mostly model such spatial-temporal dependencies by considering spatial correlations and temporal correlations separately and fail to model the direct spatial-temporal correlations. Inspired by the recent success of transformers in the graph domain, in this paper, we propose to directly model the cross-spatial-temporal correlations on the spatial-temporal graph using local multi-head self-attentions. To reduce the time complexity, we set the attention receptive field to the spatially neighboring nodes, and we also introduce an adaptive graph to capture the hidden spatial-temporal dependencies. Based on these attention mechanisms, we propose a novel Adaptive Graph Spatial-Temporal Transformer Network (ASTTN), which stacks multiple spatial-temporal attention layers to apply self-attention on the input graph, followed by linear layers for predictions. Experimental results on public traffic network datasets, METR-LA PEMS-BAY, PeMSD4, and PeMSD7, demonstrate the superior performance of our model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tang_c完成签到,获得积分10
刚刚
catch完成签到,获得积分10
1秒前
天行马发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
床头经济学完成签到,获得积分10
2秒前
共渡完成签到,获得积分10
3秒前
街道办事部完成签到,获得积分10
3秒前
3秒前
哈哈哈发布了新的文献求助10
4秒前
sanages完成签到,获得积分10
4秒前
seusyy完成签到,获得积分10
4秒前
闪蓝之光完成签到,获得积分10
4秒前
4秒前
4秒前
迷路凌柏完成签到 ,获得积分10
5秒前
冷傲的罡完成签到,获得积分20
5秒前
随遇而安应助DiDi采纳,获得200
5秒前
LCX完成签到,获得积分10
6秒前
可知蝶恋花完成签到,获得积分10
6秒前
羊笨笨完成签到,获得积分10
6秒前
7秒前
Baneyhua完成签到,获得积分10
7秒前
8秒前
8秒前
赘婿应助科研通管家采纳,获得10
8秒前
Kiosta应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
夜白应助科研通管家采纳,获得20
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
方寸应助科研通管家采纳,获得10
9秒前
夜白应助科研通管家采纳,获得20
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
夜白应助科研通管家采纳,获得20
9秒前
今后应助科研通管家采纳,获得10
9秒前
QQ应助科研通管家采纳,获得10
9秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Handbook of Medicinal Chemistry: Principles and Practice 200
Interpretability and Explainability in AI Using Python 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834007
求助须知:如何正确求助?哪些是违规求助? 3376421
关于积分的说明 10493402
捐赠科研通 3095914
什么是DOI,文献DOI怎么找? 1704794
邀请新用户注册赠送积分活动 820104
科研通“疑难数据库(出版商)”最低求助积分说明 771859