County-Level Irrigation Water Demand Estimation Using Machine Learning: Case Study of California

灌溉 克里金 农业工程 估计 亏缺灌溉 农业 环境科学 回归分析 变量(数学) 过程(计算) 灌溉管理 用水 回归 农场用水 计算机科学 水资源管理 统计 节约用水 数学 机器学习 工程类 地理 生态学 数学分析 系统工程 考古 生物 操作系统
作者
Mohammad Emami,Arman Ahmadi,André Daccache,Sara Nazif,Sayed‐Farhad Mousavi,Hojat Karami
出处
期刊:Water [Multidisciplinary Digital Publishing Institute]
卷期号:14 (12): 1937-1937 被引量:6
标识
DOI:10.3390/w14121937
摘要

Irrigated agriculture is the largest consumer of freshwater globally. Despite the clarity of influential factors and deriving forces, estimation of the volumetric irrigation demand using biophysical models is prohibitively difficult. Data-driven models have proven their ability to predict geophysical and hydrological phenomena with only a handful of influential input variables; however, the lack of reliable input data in most agricultural regions of the world hinders the effectiveness of these approaches. Attempting to estimate the irrigation water demand, we first analyze the correlation of potential influencing variables with irrigation water. We develop machine learning models to predict California’s annual, county-level irrigation water demand based on the statistical analysis findings over an 18-year time span. Input variables are different combinations of deriving meteorological forces, geographical characteristics, cropped area, and crop category. After testing various regression machine learning approaches, the result shows that Gaussian process regression produces the best results. Our findings suggest that irrigated cropped area, air temperature, and vapor pressure deficit are the most significant variables in predicting irrigation water demand. This research also shows that Gaussian process regression can predict irrigation water demand with high accuracy (R2 higher than 0.97 and RMSE as low as 0.06 km3) with different input variable combinations. An accurate estimation of irrigation water use of various crop categories and areas can assist decision-making processes and improve water management strategies. The proposed model can help water policy makers evaluate climatological and agricultural scenarios and hence be used as a decision support tool for agricultural water management at a regional scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阔达初南完成签到 ,获得积分10
1秒前
在水一方应助morgan_cao采纳,获得30
1秒前
XIA完成签到 ,获得积分10
2秒前
苏苏发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
罗微完成签到,获得积分10
4秒前
4秒前
潇洒若菱完成签到,获得积分20
4秒前
4秒前
5秒前
花花完成签到,获得积分10
5秒前
零一发布了新的文献求助10
5秒前
handong完成签到,获得积分20
5秒前
6秒前
6秒前
刘jj发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
阿修罗发布了新的文献求助10
7秒前
研友_VZG7GZ应助蜗牛撵大象采纳,获得10
8秒前
桐桐应助阔达的衣采纳,获得10
8秒前
saturning完成签到,获得积分10
8秒前
9秒前
9秒前
在水一方应助上善若水采纳,获得10
9秒前
mumu发布了新的文献求助10
9秒前
愤怒的小鸽子完成签到,获得积分10
10秒前
油菜籽完成签到 ,获得积分10
10秒前
10秒前
上官若男应助萌龙采纳,获得10
10秒前
斑马发布了新的文献求助10
10秒前
10秒前
超级不惜完成签到,获得积分10
10秒前
无脚鸟发布了新的文献求助10
11秒前
handong发布了新的文献求助10
11秒前
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Lidocaine regional block in the treatment of acute gouty arthritis of the foot 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
International Relations at LSE: A History of 75 Years 308
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3932803
求助须知:如何正确求助?哪些是违规求助? 3477698
关于积分的说明 10998431
捐赠科研通 3208032
什么是DOI,文献DOI怎么找? 1772652
邀请新用户注册赠送积分活动 859923
科研通“疑难数据库(出版商)”最低求助积分说明 797417