Lithium recovery using electrochemical technologies: Advances and challenges

电渗析 卤水 工艺工程 环境友好型 阳极 纳米技术 电化学 海水淡化 环境科学 材料科学 计算机科学 电极 化学 工程类 生物化学 生物 物理化学 有机化学 生态学
作者
Wu Lei,Changyong Zhang,Seoni Kim,T. Alan Hatton,Hengliang Mo,T. David Waite
出处
期刊:Water Research [Elsevier BV]
卷期号:221: 118822-118822 被引量:129
标识
DOI:10.1016/j.watres.2022.118822
摘要

Driven by the electric-vehicle revolution, a sharp increase in lithium (Li) demand as a result of the need to produce Li-ion batteries is expected in coming years. To enable a sustainable Li supply, there is an urgent need to develop cost-effective and environmentally friendly methods to extract Li from a variety of sources including Li-rich salt-lake brines, seawater, and wastewaters. While the prevalent lime soda evaporation method is suitable for the mass extraction of Li from brine sources with low Mg/Li ratios, it is time-consuming (>1 year) and typically exhibits low Li recovery. Electrochemically-based methods have emerged as promising processes to recover Li given their ease of management, limited requirement for additional chemicals, minimal waste production, and high selectivity towards Li. This state-of-the-art review provides a comprehensive overview of current advances in two key electrochemical Li recovery technologies (electrosorption and electrodialysis) with particular attention given to advances in understanding of mechanism, materials, operational modes, and system configurations. We highlight the most pressing challenges these technologies encounter including (i) limited electrode capacity, poor electrode stability and co-insertion of impurity cations in the electrosorption process, and (ii) limited Li selectivity of available ion exchange membranes, ion leakage and membrane scaling in the electrodialysis process. We then systematically describe potentially effective strategies to overcome these challenges and, further, provide future perspectives, particularly with respect to the translation of innovation at bench-scale to industrial application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gavin发布了新的文献求助10
1秒前
1秒前
充电宝应助fys2022采纳,获得10
2秒前
3秒前
文艺从彤发布了新的文献求助10
3秒前
搜集达人应助rayce采纳,获得10
4秒前
小巧凝竹完成签到 ,获得积分10
4秒前
4秒前
luvletter完成签到,获得积分10
5秒前
5秒前
乐观的水桃完成签到,获得积分10
6秒前
蚍蜉渡海发布了新的文献求助10
6秒前
的的墨完成签到,获得积分10
6秒前
iiiau发布了新的文献求助10
6秒前
chz发布了新的文献求助30
8秒前
8秒前
半夏应助felix采纳,获得10
9秒前
lanxinyue应助felix采纳,获得10
9秒前
WenjingziWang完成签到,获得积分10
10秒前
靓丽战斗机完成签到,获得积分10
10秒前
11秒前
枕星完成签到,获得积分20
11秒前
Gavin发布了新的文献求助10
11秒前
iiiau完成签到,获得积分10
11秒前
12秒前
许七安发布了新的文献求助10
13秒前
kelakola完成签到,获得积分10
13秒前
打卡下班应助啊啊啊采纳,获得10
13秒前
14秒前
茉莉完成签到,获得积分10
14秒前
15秒前
15秒前
大模型应助忧心的寄松采纳,获得10
15秒前
FashionBoy应助早点睡觉采纳,获得10
15秒前
15秒前
16秒前
17秒前
菜菜发布了新的文献求助10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
Beyond The Sentence: Discourse And Sentential Form 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Overcoming Synthetic Challenges in Medicinal Chemistry Mechanistic Insights and Solutions 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4075819
求助须知:如何正确求助?哪些是违规求助? 3614848
关于积分的说明 11473234
捐赠科研通 3332732
什么是DOI,文献DOI怎么找? 1831832
邀请新用户注册赠送积分活动 901684
科研通“疑难数据库(出版商)”最低求助积分说明 820495